Image and video hosting by TinyPic
ادامه نوشته

pretty

Image and video hosting by TinyPic

تعریق بیش از حد

تعریق بیش از حد که در اصطلاح علمی هیپرهیدروزیس نامیده می‌شود حالتی است که در آن میزان ترشح عرق که درحالت معمول برای دفع دمای بالای بدن به کار می‌رود، به حدی بالاتر از میزان قابل قبول می‌رسد. این افراد حتی در هوای سرد و بدون انجام فعالیتهای زیاد نیز عرق می‌کنند و همیشه از آن رنج می‌کشند. طبق برخی آمارها یک نفر از هر هزار نفر افراد جامعه دچار این مشکل هستند.

انواع مختلف هیپرهیدروزیس

همه ما از مشکلات تعریق زیاد زیر بغل اطلاع داریم! و بسیاری از دوستان ما به دلیل تعریق بیش از حد کف دستها در کارهای روزمره و حتی معمولیشان مثل حرکت دادن دستها، نوشتن، جابجا کردن کاغذ و ...دچار مشکلند، تعریق بیش از حد کف پا موجب بوی بد آن و ماندگار شدن بوی کفش و جوراب و ... خلاصه گریزان شدن دیگران خواهد شد. وقتی این تعریق در صورت نمایان می‌شود همه را متعجب و باخبر می‌کند و موجب مشکلاتی حتی در اعتماد به نفس ما خواهد شد! تعریق بیش از حد بدن می‌تواند باعث خیس شدن لباس شده و مشکلات و معضلات خاص خود را پدید آورد.

علت تعریق بیش از حد

در حقیقت بسیاری از موارد علت شناخته شده‌ای ندارند، و اصطلاحا اینها را موارد اولیه یا ایدیوپاتیک می‌نامند، به عبارت دیگر در این افراد بیماری شناخته شده‌ای باعث ایجاد تعریق فراوان نشده است. گرچه علل واقعی ناشناخته‌اند، اما مکانیسمهای این حالت بخوبی مشخص گشته‌اند. سیگنالهای اعصاب نباتی و خود کار بدن (که ما تقریبا هیچ کنترل ارادی بر آن نداریم) به غدد عرق پیام می‌دهند که عرق تولیدی خود را به بیرون بریزند، در شرایط طبیعی وقتی حرارت داخل بدن به حدی بالاتر از مقدار قابل قبول رسید سیگنالهای بیشتری برای تعریق بیشتر و در حقیقت دفع حرارت زیادی بدن ارسال می‌شود. حال وقتی این سیگنالها به حدی بیشتر از میزان مورد نیاز ارسال شوند، همین مشکل یعنی هیپرهیدروزیس ایجاد می‌شود و نه تنها برای بیمار مفید نخواهد بود بلکه او را با مشکلات متعددی روبرو خواهد ساخت!

گاهی مواقع می‌توانیم علت ایجاد این مشکل را درک کنیم و در حقیقت مسائل و بیماریهای خاصی موجب پیدایش این حالت شده‌اند، اینگونه موارد را ثانویه می‌نامیم. برخی از علل مولد تعریق بیش از حد عبارتند از:
پرکاری تیروئید، چاقی، یائسگی، استفاده از داروهای ضد افسردگی، درمانهای هورمونی برای بدخیمیها یا سایر مشکلات پروستات، اختلالات سیستم اعصاب مرکزی، اختلالات شدید روحی - روانی و ... . به نظر می‌رسد که استرسها باعث تشدید هیپرهیدروزیس می‌شوند، اما برخی از پزشکان این ارتباط را قبول ندارند. به نظر می‌رسد که در این شرایط سیستم عصبی دستورات بیشتری برای ترشح عرق به غدد مولد آن ارسال می‌کند یا بعبارت دیگر حساسیت غدد عرق به استرس در این افراد بیش از حد معمول است.

چاره چیست؟ آیا می‌توان در این زمینه کاری کرد؟

پاسخ این سؤال مثبت است‌، گر چه ممکن است فقط بتوانیم میزان ترشح را کاهش دهیم نه آن را درمان کنیم، اما همین هم می‌تواند ارزشمند باشد. برخی از آرام‌بخشها و داروهای ضد کولینرژیک می‌توانند میزان ترشح عرق را کاهش دهند، اما بخاطر عوارض جانبیشان (مثل خشکی دهان ، تاری دید و ...) چندان مورد استفاده قرار نمی‌گیرند، چرا که این عوارض دست کمی از تعریق بیش از حد ندارند!!!

کافئین از جمله موادی است که مصرف آن باعث افزایش ترشح غدد برون ریز می‌شود و به همین دلیل استفاده از آن به مبتلایان توصیه نمی‌شود، در همین راستا باید به ادویه‌جات نیز اشاره کرد و همزمان کاهش مصرف آنها را نیز به شما پیشنهاد می‌کنیم.

سرطانزایی تابش

تابش پرتوها بر موجودات زنده دارای دو اثر است، آثار تصادفی و غیر تصادفی. آثار تصادفی آثاری هستند که برای آنها دوز (مقدار) آستانه معلومی وجود ندارد. یکی از این آثار تصادفی ، سرطانزایی پرتوها در بافتها و اندامهای مختلف است.

اطلاعات اولیه

گروهی از واکنشها یا پاسخها که تحت تاثیر برخورد پرتوها به بافتها یا اندامها ، ایجاد می‌شود، تغییرات ژنتیکی و تومورزا هستند که برای آنها مفهوم آستانه ، کمتر کاربرد دارد. برای این پاسخهای اخیر به تابش یوننده ، جامعه علمی به این نظر رسیده است که تغییرات در هر سطح پرتوگیری ، می‌تواند ایجاد شود، هرچند که به ازای دوزهای پایین ، فراوانی تغییرات در جمعیت پرتو گرفته ممکن است پایین فرض شود، ولی فراوانی رخداد ، باز هم صفر نیست. پاسخهای بدون آستانه مانند سرطانزایی احتمالا فقط به تغییر یک یا حداکثر چند یاخته بستگی دارند تا پاسخ مربوطه را تامین کنند.

آثار تصادفی عبارتند از آثاری که برای آنها ، آستانه‌ای برای پاسخ وجود ندارد و برای آنها شدت پاسخ به شدت تابش ، بستگی دارد، یعنی که همه یا هیچ. یکی از این اثرات تصادفی ، تولید سرطان است. آثار تصادفی ، فرایندی را توصیف می‌کند که شامل عنصری شانسی در نتیجه است و یا به بیان دیگر ، پیش بینی درباره این فرایند بر پایه تصادف و یا احتمالات صورت می‌گیرد. در میان هر جمعیت وسیعی از یاخته‌ها ، یک عبارت احتمالی برای این احتمال وجود دارد که یک تک یاخته به یک تیره بالقوه کلنی ، برای بعضی نشانه‌های اختصاصی جدید ، تبدیل شود و این نشانه اختصاصی ممکن است به هر یک از یاخته‌های اولاد ، به صورت یک خصیصه توارثی برای همیشه منتقل شود. (ژنتیک و سرطان)

تاریخچه

سالهای چندی از کشف اشعه x از سوی رونتگن گذشت تا پی بردند تابش یوننده به ایجاد سرطان در انسانهایی می‌انجامد که تحت تاثیر تابش این پرتوها قرار می‌گیرند. التهاب پوست دستها ، اما بدون بروز سرطان اثبات شده در سال 1896 گزارش شد. اولین تغییرات سرطانی مشخص در سال 1902 در یک زخم ناشی از پرتو x گزارش شد و سرطانهای خون مشخص ناشی از تابش پرتوها ، در سال 1911 گزارش شده است. تصور می‌شد که این سرطانهای اولیه پیامد پرتوگیری بیش از حد تابش یوننده باشد، اما چندین سال بعد بود که توانستند به کمک مطالعات گسترده نشان دهند که سرطان می‌تواند با مقدار کم تابش پرتو ، ارتباط داشته باشد.

سرطانزایی تابش در حیوانات آزمایشگاهی

تولید سرطان در حیوانات آزمایشگاهی ، خیلی پیش از نمایش صریح ارتباط میان پرتوگیری تابش یوننده در دوزهای کم ، مانند آنچه پرتوشناسان دریافت می‌کنند و نیز سرطان در نزد انسان ، شناخته شده بود. در سالهای 1930 ، آزمایشگران افزایش انواع سرطانهای خون در موش را به نمایش گذاشتند. در سال 1958 آپتون و دیگران ، اطلاعات گسترده‌ای را درباره روابط دوز _ پاسخ ، برای بروز سرطان مغز استخوان و سرطان لنفاوی در موش انتشار دادند که برخی از آنها به قرار زیر است:


  • احتمال بروز تومور در حیواناتی که هرگز ، پرتو نگرفته‌اند، مخالف صفر است.

  • منحنی احتمال بروز سرطان برحسب دوز ، به ازای دوزهای کم به شدت افزایش می‌یابد.

  • یک مقدار بیشینه برای بروز دست یافتنی (سرطان) وجود دارد.

  • معمولا احتمال بروز به ازای دوزهای بالاتر از بیشینه ، کاهش می‌یابد، ولی این کاهش با انجام تصحیحهای مربوط به مرگ ناشی از سایر عوامل از بین می‌رود.

    چرا بیشینه‌ای برای بروز تومور در حیوانات پرتو دیده ، وجود دارد؟ مطالعات مربوط به تغییر شکل یاخته این موضوع را مطرح و تائید کرده‌اند که با افزایش دوز تابش ، از بین رفتن یاخته‌های بالقوه تغییر شکل یافته به مساله‌ای مهم تبدیل می‌شود. در نتیجه تعداد یاخته‌هایی که زنده می‌مانند تا سرانجام توموری را بوجود آورند، در دوزهای بسیار زیاد کاهش می‌یابد. این توضیح برای توجیه وضع ثابت پیوسته منحنی دوز _ پاسخ مشاهده شده برای بسیاری از تومورها ، قانع کننده نیست. توصیف کمی خطر مرتبط با پرتوگیری تابش یوننده برای جمعیتهای انسانی را نمی‌توان مستقیما از مطالعات مربوط به حیوانات بدست آورد. از آزمایشات انجام گرفته بر روی حیوانات ، می‌توان به نتایج زیر پی برد:

  • بافتهای جدید از هر نوع را می‌توان با پرتودهی یک حیوان با حساسیت مناسب در شرایط پرتودهی متناسب معین تولید کرد.

  • با پرتودهی حیوانات گونه‌ها و نژادهای مختلف ، فراوانی انواع بافتهای جدید زیاد نمی‌شود.

  • آثار سرطانزایی تابش از طریق ساز و کارهای متفاوتی که به نوع تومور و شرایط پرتوگیری بستگی دارد، به یکدیگر مربوط می‌شوند.

  • در سطوح دوز پایین یا متوسط ، آثار سرطانزایی تابش اغلب ظاهر نمی‌شود، مگر عوامل دیگر به آن کمک کنند.

  • توزیع تومورهای ناشی از تابش معمولا برحسب نوع تومور ، زمینه ژنتیکی و سن حیوانی پرتودیده ، شرایط پرتودهی و سایر متغیرها ، تغییر می‌کند.

نظریه دودمانی سرطانزایی

سرطان با سه ویژگی زیر مشخص می‌شود:


  • تغییر شکل یاخته‌ها که باعث بوجود آمدن یک حالت عدم پاسخگویی به ساز و کارهای کنترل رشد موجود زنده دست نخورده می‌شود.

  • توانایی این یاخته‌های تغییر شکل یافته در تجاوز به بافتهای اطراف.

  • توانایی این سلولها در مهاجرت به سایر نقاط بدن و بوجود آوردن یک تومور در حال رشد جدید ، نتیجه تغییر ارث بردنی در ماده ژنتیکی یک سلول بدنی است.

    تائید تجربی توانمندی برای مدل دودمانی سرطانزایی وجود دارد. تغییرات کروموزومی ، نقش ترمیم DNA ، ترمیم خطا ، وراثت پذیری ویژگیهای تغییر شکل یافته در یاخته‌های بدنی ، همگی اگر دارای طرحهای یکسان نباشند، بسیار شبیه به الگوهایی هستند که در بروز سرطان ناشی از تابش ، دیده می‌شود. از تحلیل طرح تغییرات هم آنزیم داخل تومورها ، مدرکی قوی دال بر سازگاری و تداوم دراز مدت تغییرات نماد کروموزومی در سلول سرطانی و تولید طرحهای ایمنی گلبولی مخصوص که سرطان از یک تک یاخته بوجود آمده است، وجود دارد.

    - تفاوتهای میان گونه‌ای (یعنی مربوط به نژاد) در حساسیت به سرطانزایی ناشی از تابش پرتوها ، نقش مهمی را برای ساخت ژنتیکی نمونه پرتو دیده داراست. حالت تکثیر یاخته‌ای و وابستگی حساسیت تولید سرطان به سن نیز ، دخالت تعیین کننده‌ای در این فرایند دارند.

نهفتگی رشد تومور

همه داده‌های انسانی که ارزیابی شده است، به علاوه داده‌های تجربی مربوط به حیوانات ، نشان می‌دهند که همواره تاخیری بین تابش نمونه و ظهور بافت جدید ، وجود دارد. برای جمعیتهای جونده ، نهفتگی در فاصله میان تابش و ظهور تومور می‌تواند از چند ماه سال (2 تا 3 سال) باشد. برای جمعیتهای انسانی ، نهفتگی می‌تواند به کوتاهی 2 الی 5 سال مانند سرطانهای خون و یا به ازای 30 سال ، مانند برخی تومورهای سخت انسانی ، باشد. دلیل وجود این دوره نهفته مشخص نیست، اما وجود یک نهفتگی طولانی نشان می‌دهد که تغییرات چندی برای رشد نهایی تومورها یا در یاخته تغییر شکل داده و یا در ارتباط با میزبان این یاخته‌های تغییر شکل یافته ، ضروری است.

آثار آهنگ دوز

یک مشاهده کلی درباره سرطانزایی تابش این است که کاهش آهنگ دوز در فرایند پرتودهی ، تاثیر تابش در تولید سرطان را کم می‌کند. کاهش مشاهده شده در تاثیر کم کردن آهنگ دوز با قابلیت یاخته‌های پرتو دیده در ترمیم آسیب وارد بر مولکولهای DNA ارتباطی تنگاتنگ دارد. چون تاثیر بیشتر تابش با LET بالا نیز به ترمیم یا عدم ترمیم DNA مربوط می‌شود، انتظار داریم تابشهای با LET بالا برای سرطانزایی موثرتر از پرتوهای با LET پایین باشند. کم کردن آهنگ دوز معمولا تاثیر تابش با LET پایین را در تولید سرطان ، کاهش می‌دهد.

سرطانزایی تابش در جمعیتهای انسانی

چند گروه از افراد پرتودیده برای ارزیابی گسترده سرطانهای پرتوزاد در دسترس هستند که در بین آنها گروههای زیر دارای اهمیت می‌باشند.

پرتوگیری شغلی

  • پرتو شناسانی که در ضمن کار در معرض تابش قرار گرفته‌اند.

  • کارکنان معادن اورانیوم و سایر معادن که در محل کار خود در معرض تابش رادون (Ra) قرار گرفته‌اند.

  • رنگ کاران عقربه‌های رادیوم که در خلال رنگ کردن عقربه‌های شبرنگ در معرض رادیوم قرار می‌گیرند.

پرتو گیری پزشکی

  • بیمارانی که برای خشک شدن مفصل ستون مهره‌ها ، با پرتوهای x یا رادیوم ، مداوا می‌شوند.

  • زنانی که به خاطر درمان بیماریهای بی‌خطر ناحیه لگن و یا سینه تحت درمان هستند.

  • نوزادان و کودکانی که به خاطر عوارض بی‌خطری چون غده‌های تیموس بزرگ و یا کچلی مداوا می‌شوند.

  • گروهی از کودکان که در هنگام حاملگی مادرشان در داخل رحم ، در معرض تابش قرار گرفته‌اند.

سرطان پرتوزاد اندام خاص در انسانها

برآورد ضرایب خطر سرطانها در اندامهای به خصوص ، در حال حاضر در شرایط بازنگری پردامنه‌ای است. حساسیت به بروز سرطان پرتوزاد به شدت تغییر می‌کند. نهفتگی بروز این بیماریها نیز دارای گستره وسیع تغییراتی از 5 سال برای سرطان خون تا 30 سال برای سرطان سینه است. وقتی داده‌های مربوط به بروز سرطان خون در بازماندگان ژاپنی و سایر گروههای تحت تاثیر اشعه ، ارزیابی شدند، نهفتگی کوتاه آن باعث شد که ناظران پیش بینی کنند مغز استخوان ، حساس‌ترین عضو برای سرطان پرتوزاد است.

با گذشت زمان و بررسی سرطانهای پرتوزاد در سایر اندامهای بدن ، این دیدگاه تغییر چشمگیری کرده است. اکنون این باور وجود دارد که حساس‌ترین اندامها به سرطان پرتوزاد عبارتند از: سینه زنان و ریه‌ها.

ژنوم در موجودات مختلف


به کل ماده ژنتیکی موجود در داخل یک سلول ، ژنوم گفته می‌شود و اندازه ژنوم در موجودات مختلف متغیر است. ولی در هر گونه از موجودات اندازه ژنوم یکسان است.

اطلاعات اولیه

در ساده‌ترین حالت یک ژن را می‌توان به صورت قطعه‌ای از یک مولکول DNA و حاوی رمز برای توالی اسید آمینه‌ای یک رشته پلی پپتیدی و توالیهای تنظیم کننده لازم برای بروز آن در نظر گرفت. در بین جانداران دو نوع سلول یوکاریوت و پروکاریوت در نظر گرفته می‌شود. جانداران یوکاریوت به جاندارنی گفته می‌شود که سلولهای آنها دارای هسته است و مولکولهای DNA آنها در داخل ساختمانهایی به نام کروموزوم درهسته بسته بندی شده‌اند. در جانداران پروکایوت هسته مشخص و کروموزومها یافت نمی‌شوند و مولکولهای DNA در ساختارهایی به نام نوکلوئید که فاقد پروتئینهای هیستون هستند مجتمع می‌شوند. به مجموعه این ژنها در هر سلول در جانداران مختلف ژنوم آن جاندار گفته می‌شود.



تصویر

ژنوم ویروسها

ژنوم ویروسها ساختمان ساده‌ای دارند که معمولا فقط از مقداری پروتئین و مقداری اسید نوکلئیک تشکیل شده است (در ویروسهای پوشش‌دار یک لایه لیپیدی نیز وجود دارد). اسید نوکلئیک موجود در ویروسها ممکن است، RNA یا DNA باشد. ولی در هیچ ویروسی DNA و RNA باهم وجود ندارد. RNA و DNA موجود در ویروسها ممکن است تک رشته‌ای یا دو رشته‌ای باشند. همچنین در مورد ویروسهای DNA‌دار ممکن است ژنوم آنها به صورت خطی یا حلقوی باشد. ولی در ویروسهای RNAدار ، ژنوم همواره به صورت خطی خواهد بود. در بعضی از ویروسها برای مثال رترو ویروسها که عامل بیماری ایدز هستند، در بین آنها می‌باشد. ژنوم به صورت یک قطعه‌ای نبوده ، بلکه چند قطعه‌ای می‌باشد.

اندازه ژنوم ویروسها

اندازه ژنوم ویروسها یکسان نیست و حدودا بین 3 کیلو باز تا 200 کیلو باز متغیر می‌باشد. وزن ژنوم ویروسها در حدود 1.7 الی 106×13 می‌باشد. همانطوری که از مثالهای فوق مشخص است، تفاوت خاصی بین اندازه ژنوم ویروسهای مربوط به پروکاریوتها و ویروسهای مربوط به یوکارویوتها وجود ندارد. نکته جالب دیگر در مورد ژنوم ویروسها این است که مولکولهای دیگری مانند پلی پپتیدها و آمینو اسیدها و قندها ممکن است به صورت کووالانسی به اسیدهای نوکلئیک ویروسها متصل شوند.

برای مثال در باکتریوفاژ T ، زوج T4 , T2 به جای سیتوزین ، 5-هیدروکسی متیل سیتوزین وجود دارد که عامل OH- ، هیدروکسی متیل سیتوزینمعمولا با قند گلوکز جایگزین می‌شود. این عمل ، محافظت ژنوم ویروس در مقابل آنزیمهای نوکلئاز میزبان را سبب می‌شود.



تصویر

ژنوم پروکاریوتها

ژنوم پروکاریوتها یک مولکول DNA حلقوی است که به میزان زیادی پیچ خورده و به صورت فرا پیچیده در آمده است. تا خوردن و فراپیچش برای جای گرفتن ژنوم در داخل سلول بسیار ضروری است. زیرا اندازه معمولی ژنوم در پروکاریوتها بسیار بزرگتر از اندازه سلول باکتری است. برای مثال طول DNA کامل Ecoli بدون واپیچش حدود 100mm است. در حالی که طول خود سلول Ecoli حدود 2 میکرومتر می‌باشد و جای دادن این DNA در داخل EColi به تا خوردن زیادی نیاز دارد. اندازه ژنوم معمولی باکتریها در حدود 109 الی 1010 دالتون می‌باشد.

مثلا EColi دارای ژنومی با وزن 2.7x109 دالتون و با حدود 4600 کیلو جفت باز می‌باشد. این اندازه به میزان قابل توجهی کوچکتر از ژنوم یوکاریوتها می‌باشد. ولی از اندازه ژنوم ویروسها بزرگتر است. در بسیاری از باکتریها علاوه بر ژنوم اصلی ، در حدود 20-1 مولکول کوچک DNA حلقوی وجود دارد که پلاسمید خوانده می‌شوند. اندازه پلاسمیدها کوچک بوده و در حدود اندازه ژنوم ویروسها می‌باشد. پلاسمیدها قدرت تکثیر دارند و با نظم خاصی متناسب با تقسیم باکتریها تکثیر می‌شوند.

بطوری که تعداد آنها درون سلول باکتری همواره ثابت است. مشخصه اصلی پلاسمیدها این است که اطلاعات مربوط به بعضی از خصوصیات باکتریها ، مثلا مقاومت به آنتی بیوتیکها یا توانایی مصرف مواد و غیره بر روی پلاسمید قرار دارند و با انتقال یک پلاسمید از یک باکتری به باکتری دیگر این خصوصیات نیز منتقل می‌شود. امروزه پلاسمیدها نقش مهمی در زمینه کارهای مهندسی ژنتیک بر عهده دارند.

ژنوم میتوکندری و کلروپلاست

این ژنومها از نظر بسیاری از خصوصیات شبیه ژنوم باکتریها می‌باشد. این ژنومها نیز به صورت DNA حلقوی فرا پیچیده هستند. اندازه این ژنومها در یوکاریوتهای مختلف متفاوت است. برای مثال اندازه کلروپلاست در گیاهان مختلف حدود 120 - 20 کیلو جفت باز می‌باشد. ولی اندازه ژنوم میتوکندری محدوده وسیعتری دارد و حدود 200 - 16 کیلو جفت باز می‌باشد.

میتوکندری یوکاریوتهای عالی‌تر ژنوم کوچکتری نسبت به میتوکندری یوکاریوتهای پست دارند. برای مثال اندازه ژنوم میتوکندری انسان 16569 جفت باز می‌باشد. در حالی که اندازه ژنوم میتوکندری مخمر حدود 90000 جفت باز می‌باشد. دانشمندان علت کوچکتر شدن ژنوم میتوکندری در یوکاریوتهای عالی‌تر را خارج شدن ژنها از میتوکندری و ورود آنها به داخل ژنوم میزبان می‌دانند. این مطلب امروزه تا حدودی به اثبات رسیده است.



تصویر

ژنوم یوکاریوتها
اندازه ژنوم موجودات یوکاریوت از مخمر گرفته تا انسان ، نسبت به ژنومهای قطعات مختلف DNA ، رشته‌ای است که هنگام تقسیم سلولی به صورت کروموزومها قابل مشاهده هستند. این ساختار ناشی از وجود هیستونها در داخل ژنوم یوکاریوتها می‌باشد. اندازه ژنوم یوکاریوتها 1015 - 1010 جفت باز متغیر می‌باشد که در تعداد متفاوتی از کروموزومها وجود دارند.

اندازه کروموزومها و تعداد آنها در هر گونه از یوکاریوتها ثابت می‌باشد. نکته دیگر در مورد یوکاریوتها محصور بودن ژنوم آنها در داخل هسته می‌باشد. وجود غشای هسته باعث می‌شود که اعمال همانندسازی و نسخه برداری DNA در خارج از محیط داخلی سلول صورت بگیرد که این مطلب خود یک عامل تنظیمی برای ژنها می‌باشد.

توالیهای با تکرار زیاد

نکته مهم و جالب توجه دیگر در مورد ژنوم یوکاریوتها ، وجود توالیهای تکرار شونده در ژنوم آنهاست. این توالیهای تکراری در ژنوم تمامی یوکاریوتها وجود دارد و ممکن است تا 10 میلیون بار تکرار شوند. توالی تکرار شونده ممکن است تا حدود 100 نوکلوتید را شامل شود. این توالیها را توالیهایی با تکرار زیاد می‌نامند. در کنار توالیهای با تکرار زیاد ، توالیهای دیگری با تکرار متوسط نیز وجود دارند که طول آنها بیشتر از طول توالیهای با تکرار زیاد می‌باشد. این توالیها معمولا تعداد کمتری (حدود 1000) دارند.

نقش توالیها با تکرار زیاد

دخالت در سازمان دهی DNA یوکاریوتها می‌باشد. برای مثال این توالیها در سانترومر وجود دارند. توالیهای با تکرار متوسط گاهی نقش ساختمانی نیز دارند. برای مثال ژنهای RNA ریبوزومی در بعضی از موجودات مثلا وزغها به صورت تکرار متوسط هستند و حدود 1000 نسخه از آن وجود دارد.

همچنین به دلیل قرار گرفتن توالیهای با تکرار متوسط در محلهای خاص نسبت به ژنهای ساختمانی ، به این توالیها نقش تنظیمی نیز نسبت داده شده است. با توجه به حجم زیاد توالیهای تکراری در ژنوم یوکاریوتها ، ژنهای ساختمانی بطور تخمینی فقط حدود 10 درصد کل DNA سلول یوکاریوتها را تشکیل می‌دهند.

ژنتیک مولکولی

دید کلی

ماهیت مولکولی ماده ژنتیکی چیست؟ چطور اطلاعات ژنتیکی از یک نسل به نسل بعد با صحت بالا انتقال می‌یابد؟ تغییرات نادر در ماده ژنتیکی که ماده خام تکامل می‌باشد، چگونه ایجاد می‌شوند؟ چطور اطلاعات ژنتیکی نهایتا به شکل توالیهای اسید آمینه‌ای مولکولهای پروتئینی متنوع موجود در یک سلول زنده ، بیان می‌شود؟ و ... . واحد پایه اطلاعات در سیستمهای زنده ، ژن می‌باشد.

از نظر بیوشیمیایی یک ژن به صورت قطعه‌ای از DNA تعریف می‌شود که اطلاعات مورد نیاز برای ایجاد یک محصول دارای فعالیت بیولوژیک راکد می‌کند. محصول نهایی معمولا یک پروتئین است. ممکن است محصول ژنی وظیفه‌ای یکی از انواع RNA باشد. ذخیره ، حفظ و متابولیزم این واحدهای اطلاعاتی موضوعات بحث را در ژنتیک مولکولی تشکیل می‌دهند. پیشرفتهای اخیر در ژنتیک مولکولی ، منجر به مطرح شدن سه فرآیند اصلی در استفاده از اطلاعات ژنتیکی شده است.


  • اولین فرآیند ، همانند سازی DNA یا نسخه برداری از DNA مادری و تولید مولکولهای DNA با توالیهای نوکلئوتیدی یکسان می‌باشد.

  • دومین فرآیند سنتز RNA از روی DNA است، که طی قسمتهایی از پیام ژنتیکی کد شده در DNA دقیقا به صورت RNA ، نسخه برداری می‌شود.

  • سومین فرآیند ، ترجمه می‌باشد که به موجب آن پیام ژنتیکی کد شده در RNA پیک بر روی ریبوزومها به پلی‌پپتیدی با توالی مشخص از اسیدهای آمینه ترجمه می‌شود.



img/daneshnameh_up/e/e9/chromatn.2.jpg

وقایع مهم در ژنتیک مولکولی تا سال 1944

  • شروع ژنتیک توسط گرگور مندل و با مقاله‌ای بود که وی در سال 1866 در مجموعه مقالات انجمن علوم طبیعی در مورد نخود فرنگی ، به چاپ رساند.
  • تا سال 1900 طول کشید تا سایر زیست شناسان مانند هوگو ، کورنس و شرماک اهمیت کار مندل را درک کنند و این علم پس از رکورد طولانی توالی دوباره یافت.
  • در سال 1903 ، ساتن پیشنهاد کرد که ژنها روی کروموزومها قرار دارند.
  • در سال 1909 ، یوهانس پیشنهاد کرد که عوامل مندلی ژن نامیده شدند.
  • در سال 1910 ، مورگان آزمایشهای زیادی بر روی مگس سرکه انجام داد.
  • در سال 1927 ، مولر کشف کرد که اشعه ایکس ایجاد موتاسیون (جهش) در مگس سرکه می‌نماید.
  • در سال 1941 ، بیدل و تاتوم پیشنهاد کردند که هر ژن فعالیت یک آنزیم را کنترل می‌کند.
  • در سال 1944 ، کتاب زندگی چیست توسط یک فیزیکدان به نام شرودینگر انتشار یافت.

کشف ساختمان DNA

شناخت امروزی ما در مورد مسیرهای اطلاعاتی از همگرایی یافته‌های ژنتیکی ، فیزیکی و شیمیایی در بیوشیمی امروزی حاصل شده است. لین شناخت در کشف ساختمان دو رشته مارپیچی DNA ، توسط جیمز واتسون و فرانسیس کریک در سال 1953 خلاصه گردید. فرضیه ژنتیکی ، مفهوم کد نمودن توسط ژنها را مشخص نمود. با استفاده از روشهای فیزیکی ، تعیین ساختمان مولکولی DNA بوسیله آزمایش انکسار اشعه ایکس ممکن گردید. شیمی نیز ترکیب DNA را آشکار نمود. ساختمان مارپیچی دو رشته‌ای DNA ، چگونگی نسخه برداری آن را نشان داد، نحوه تولید RNA و سنتز پروتئین از روی آن را شفاف کرد.



تصویر

ژنها و کروموزومها

ژنها قطعاتی از یک کروموزوم هستند که اطلاعات مورد نیاز برای یک مولکول DNA یا یک پلی پپتید را دارند. علاوه بر ژنها ، انواع مختلفی از توالیهای مختلف تنظیمی در روی کروموزومها وجود دارد که در همانند سازی ، رونویسی و ... شرکت دارند. کروموزومهای یوکاریوتی دارای دو توالی مهم تکراری DNA می‌باشند که عمل اختصاصی را انجام می‌دهند؛ سانترومرها که نقاط اتصالی برای دوک تقسیم هستند و تلومرها که در دو انتهای کروموزوم وجود دارند. کروماتین در یوکاریوتها به صورت واحدهای نوکلئوزومی قرار دارد.

متابولیزم DNA

سلامت DNA بیشترین اهمیت را برای سلول دارد که آن را می‌توان از پیچیدگی و کثرت سیستمهای آنزیمی شرکت کننده در همانند سازی ، ترمیم و نوترکیبی DNA ، دریافت. همانند سازی DNA با صحت بسیار بالا و در یک دوره زمانی مشخص در طی چرخه سلولی به انجام می رسد. همانند سازی نیمه حفاظتی است، بطوری که هر رشته آن به عنوان قالبی برای تولید رشته جدید DNA مورد استفاده قرار می‌گیرد. سلولها دارای سیستمهای متعددی برای ترمیم DNA هستند. توالیهای DNA در طی واکنشهای نوترکیبی ، در فرآیندهایی که شدیدا هماهنگ با همانند سازی یا ترمیم DNA هستند، نو آرایی می‌شوند.

متابولیزم RNA

رونویسی توسط آنزیم RNA پلیمراز وابسته به DNA کاتالیز می‌شود. رونویسی در چندین فاز ، شامل اتصال RNA پلیمراز به یک جایگاه DNA به نام پروموتور ، شروع سنتز رونویسی ، طویل سازی و خاتمه ، روی می‌دهد. سه نوع RNA ساخته می‌شود؛ RNA پیک که برای ساختن پلی پپتیدها مورد استفاده قرار می‌گیرد. RNA ناقل که در انتقال اسیدهای آمینه بر روی ریبوزومها برای پروتئین سازی ، شرکت دارند و RNA ریبوزومی که در ساختار ریبوزوم شرکت دارند. این RNA ها به صورت پیش ساز ساخته می‌شوند که طی فرآیندهای آنزیمی بالغ می‌شوند.

متابولیزم پروتئین

پروتئینها در یک کمپلکس RNA پروتئینی به نام ریبوزوم ، با یک توالی اسید آمینه‌های خاص در طی ترجمه اطلاعات کد شده در RNA پیک ، سنتز می‌گردند. اسیدهای آمینه‌ای که توسط کدونهای RNA پیک مشخص می‌گردند، از کلمات سه حرفی نوکلئوتیدی تشکیل شده‌اند. برای ترجمه نیاز به مولکولهای RNA ناقل می‌باشد که با شناسایی کدونها ، اسیدهای آمینه را در موقعیتهای متوالی مناسب خود در داخل زنجیر پلی پپتیدی قرار می‌دهند. بعد از سنتز بسیاری از پروتئینها به موقعیتهای خاص خود در داخل سلول هدایت می‌شوند.



تصویر

تنظیم بیان ژن

بیان ژنها توسط فرآیندهایی تنظیم می‌شود که بر روی سرعت تولید و تخریب محصولات ژنی اثر می‌گذارند. بیشتر این تنظیم در سطح شروع رونویسی و بواسطه پروتئینهای تنظیمی رخ می‌دهد که رونویسی را از پروموتورهای اختصاصی مهار یا تحریک می‌کنند. اثر مهارکننده ها را تنظیم منفی و فعال شدن را تنظیم مثبت گویند. پروتئینهای تنظیمی ، پروتئینهای اتصالی DNA هستند که توالیهای اختصاصی از DNA را شناسایی می‌کنند. هورمونها بر روی تنظیم بیان ژن تأثیر دارند. موجودات یوکاریوت و پروکاریوت دارای مکانیزمهای متفاوتی برای تنظیم بیان ژنهای خود دارند.

فناوری DNA نوترکیبی

با استفاده از فناوری DNA نو ترکیبی مطالعه ساختمان و عملکرد ژن بسیار آسان شده است. جداسازی یک ژن از یک کروموزوم بزرگ نیاز دارد به، روشهایی برای برش و دوختن قطعات DNA ، وجود ناقلین کوچک که قادر به تکثیر خود بوده و ژنها در داخل آنها قرار داده می‌شوند، روشهایی برای ارائه ناقل حاوی DNA خارجی به سلولی که در آن بتواند تکثیر یافته و کلنیهایی را ایجاد کند و روشهایی برای شناسایی سلولهای حاوی DNA مورد نظر. پیشرفتهای حاصل در این فناوری ، در حال متحول نمودن بسیاری از دیدگاههای پزشکی ، کشاورزی و سایر صنایع می‌باشد.                       منبع:http://www.daneshnameh.ir

ریخت شناسی ویروسها  

اطلاعات اولیه

به کمک میکروسکوپ الکترونی و تکنیکهای انکسار اشعه ایکس می‌توان مورفولوژی ویروسها را بطور دقیق مورد بررسی قرار داد. نوع تقارن ویروس و بویژه ساختمان سطحی آن را می‌توان به کمک میکروسکوپ الکترونی و با استفاده از رنگ فلزات سنگین مشخص کرد. در این حالت فلزات سنگین به داخل ذره ویروس نفوذ کرده و موجب نمایان شدن ساختمان سطحی ویروس در اثر خاصیت رنگ آمیزی منفی می‌شوند. قابلیت افتراق این روش 4 - 3 نانومتر است. کریستالوگرافی اشعه ایکس می‌تواند اطلاعاتی در مورد ویژگی‌های اتمی ویروسها در حدود 0.3 - 0.2 نانومتر فراهم کند. در این روش نمونه‌ها باید به صورت کریستال تهیه شده باشند که این امر فقط در مورد ویروسهای کوچک و فاقد پوشش امکان‌پذیر است.



تصویر

انواع مختلف تقارن ذرات ویروس

به علت صرفه جویی ژنتیکی ، ضروری است که ساختمان ویروس از مولکولهای مشابهی از یک یا چند نوع پروتئین ساخته شوند. ویروسها بر اساس ترتیب واحدهای مورفولوژیک به سه گروه می توان تقسیم کرد:


تقارن مکعبی

تمام ویروسهای جانوری که دارای تقارن مکعبی هستند، از نوع 20 وجهی می‌باشند که بیشترین کارآیی را در ترتیب واحدهای ساختمانی در یک پوسته بسته فراهم می‌کند. بر روی سطح یک 20 وجهی دقیقا 60 واحد مشابه وجود دارد. وجود مثلث‌های کوچک در سطوح مختلف یک 20 وجهی موجب می‌شود که با رعایت اصول تقارن ، تعداد بیشتری از واحدهای ساختمانی در تشکیل ساختمان کپسید شرکت کنند.

اغلب ویروسهایی که دارای تقارن 20 وجهی هستند، به شکل 20 وجهی نبوده و ظاهر اغلب آنها کروی است. اسید نوکلئیک ویروس در داخل ذراتی ایزومتریک قرار می‌گیرد. در این روند پروتئین‌های هسته مرکزی ویروس و هیستون‌های سلولی در شکل دادن به اسید نوکلئیک ویروس و قرار گیری مناسب‌تر آن در داخل ذرات ، دخالت می‌کنند. تقارن مکعبی در هر دو گروه دارای DNA یا RNA مشاهده می‌شود.



تصویر

تقارن مارپیچی

در تقارن مارپیچی واحدهای پروتئینی به صورت مارپیچ در اطراف اسید نوکلئیک ویروس قرار گرفته و بطور منظم به آن اتصال می‌یابند. مجموعه اسید نوکلئیک رشته‌ای پروتئین ویروسی به صورت کلافه‌ای توسط یک پوشش چربی احاطه می‌شود. کپسومرها در این نوع تقارن به شکل مارپیچ گرد هم می‌آیند.

این موضوع بیشتر با روش پراش پرتو ایکس مورد مطالعه قرار گرفته است. روش پرتو ایکس ، نخستین بار برای مطالعه ویروس موزائیک توتون بکار رفت. اسید نوکلئیک این ویروس RNA مارپیچی است و از 6000 نوکلئوتید تشکیل شده است. کپسومرها طوری بر سطح RNA مستقر شده‌اند که به ویروس شکل کلی میله‌ای محکم به طول 300 نانومتر می‌دهند. اندازه ویروس بوسیله RNA مشخص می‌شود.

ویروسهای آنفلوآنزا و اوریون نمونه‌هایی از ویروسهای جانوری با تقارن مارپیچی هستند. این ویروسها بر خلاف ویروس موزائیک توتون (TMV) قابلیت انعطاف دارند. تفاوت دیگر این ویروسها با سایر ویروسهای دارای تقاون مارپیچی در این است که ساختار مارپیچی در ویروسهای جانوری توسط غلافی پوشیده است که بر سطح آن زواید خار مانندی دیده می‌شود.

تقارن پیچیده

عده‌ای از ویروسها ساختمان بسیار پیچیده‌ای دارند، مانند ویروسهای باکتریایی. ویروسهای گروه آبله که فاقد کپسید مشخصی بوده، ولی غلاف متعددی در اطراف اسید نوکلئیک دارا می‌باشند و برخی از باکتریوفاژها که فاقد کپسید و ساختارهای اضافی متصل به آن می‌باشند، دو مثال از این نوع ویروسها محسوب می‌شوند. شکل کپسید باکتریوفاژ و ناحیه سر چند وجهی بوده و دم آن مارپیچی است. ناحیه سر محتوی اسید نوکلئیک است.

سنجش اندازه ویروسها

ویروسها اندازه بسیار کوچکی داشته و قادرند از فیلترهایی که مانع عبور باکتریها می‌شوند، به راحتی عبور کنند، اما از آنجا که برخی باکتریها از بزرگترین ویروسها ، کوچکتر هستند. بنابراین قابلیت عبور از فیلترهای مزبور را نمی‌توان به عنوان ویژگی منحصر به فرد ویروسها ، محسوب نمود.



تصویر

روشهای تعیین اندازه ویروسها

مشاهده مستقیم در میکروسکوپ الکترونی

در مقایسه با میکروسکوپ نوری ، در میکروسکوپ الکترونی از الکترون به جای امواج نور و از عدسی‌های الکترومغناطیسی به جای عدسی‌های شیشه‌ای استفاده می‌شود. ویروسها را می‌توان در نمونه‌های بدست آمده از ترشحات بافتی یا در برشهای بسیار نازک از سلولهای آلوده مشاهده کرد. امروزه استفاده از میکروسکوپ الکترونی بیشترین کاربرد را در مقایسه با سایر روشها در اندازه گیری ویروسها دارا می‌باشد.

فیلتراسیون از طریق غشایی با منافذی در اندازه‌های معین

هر یک از این غشاها دارای منافذی با اندازه‌های مشخص هستند و در صورتی که نمونه‌های ویروسی از یک سری از آنها عبور داده شوند، اندازه تقریبی ویروس را می‌توان تعیین کرد.

رسوب در اولترا سانتریفوژ

ذرات موجود در مایع ، بر اساس اندازه خود در ته ظرف رسوب می‌کنند. در اولترا سانتریفوژ ، نیروهایی که 100 هزار برابر قویتر از نیروی جاذبه زمین هستند، باعث رسوب ذرات در ته لوله می‌شوند. با استفاده از رابطه بین اندازه و شکل ویروس با سرعت رسوب آن می‌توان اندازه ویروس را تعیین کرد.
بار دیگر یادآوری می‌شود که ساختمان فیزیکی ویروس در تخمین اندازه ویروس ، موثر است.

اصطلاحات رایج در ویروس شناسی  


ویروسها کوچکترین عوامل عفونت‌زا هستند که قطر آنها تقریبا بین 20 تا 300 نانومتر است و در ژنوم خود تنها دارای یک نوع اسید نوکلئیک (RNA یا DNA) هستند. اسید نوکلئیک ویروس ، درون پوسته‌های (Coat) پروتئینی محصور شده و گاهی یک غشای چربی نیز این پوسته را احاطه می‌کند. یک واحد عفونی کامل را ویریون (Virion) می‌نامند.




تصویر

اطلاعات اولیه

ویروسها در محیط خارج سلولی ، بدون فعالیت بوده و تنها قادرند در سلولهای زنده تکثیر یافته و در سطح ژنتیکی به عنوان یک انگل عمل نمایند. اسید نوکلئیک ویروس حاوی یک سری اطلاعات ضروری است که موجب سنتز ماکرومولکولهای اختصاصی و لازم برای تولید نسلهای بعدی ویروس ، در داخل سلولهای آلوده میزبان می‌گردد. طی دوره همانندسازی ویروس ، نمونه‌های متعددی از اسید نوکلئیک و پوسته‌های پروتئینی آن ساخته می‌شوند. پوسته‌های پروتئینی در کنار یکدیگر قرار گرفته و کپسید (Capsid) را تشکیل می‌دهند.

کپسید با احاطه کردن اسید نوکلئیک ویروسی موجب حفاظت آن در برابر محیط خارج سلولی می‌شود. کپسید اتصال و نفوذ ویروس به سلولهای جدید را نیز تسهیل می‌کند. عفونت ویروس ممکن است تاثیر ناچیزی بر روی سلول میزبان داشته باشد و یا این که موجب آسیب عمده سلول و یا مرگ آن شود. دنیای ویروسها سرشار از تنوع است. آنها از نظر ساختمانی ، سازمان ژنتیکی و نحوه بیان آن روشهای همانند سازی و نحوه انتقال بسیار با یکدیگر متفاوت هستند. طیف میزبانهای یک ویروس ممکن است بسیار محدود و یا خیلی گسترده باشد.

اصطلاحات و تعاریف در ویروس شناسی

  • کپسید: پوشش یا غلاف پروتئینی که ژنوم اسید نوکلئیک را در بر می‌گیرد.

  • کپسومر (Capsomer): واحدهای مورفولوژی هستند که با استفاده از میکروسکوپ الکترونی در سطح ویروسهای 20 وجهی می‌توان آنها را مشاهده کرد. هر کپسومر متشکل از مجموعه‌ای از پلی پپتیدها می‌باشد. کپسومرهایی که کاملا مشابه یکدیگرند، گاهی از لحاظ شیمیایی با یکدیگر تفاوت دارند.

  • ویروس ناقص (Defective Virus): ذره ویروسی را گویند که در بعضی از جنبه‌های همانند سازی از لحاظ عملکردی ناقص است.

  • پوشش Envelope: غشا لیپیدی است که اطراف برخی از ذرات ویروسی را احاطه می‌کند. این پوشش طی روند کامل شدن ویروس و جوانه زدن از غشا سلولی بدست می‌آید. گلیکوپروتئین‌های رمزگذاری شده توسط ویروس در سطح پوشش قرار می‌گیرند که اصطلاحا آنها را پیلومر می‌نامند.




تصویر

  • نوکلئوکپسید: مجموعه پروتئین _ اسید نوکلئیک را گویند که در واقع فرم بسته بندی شده ژنوم ویروس است. این اصطلاح معمولا وقتی بکار می‌رود که نوکلئوکپسید یک جز ساختمانی کوچک از یک ذره ویروسی پیچیده‌تر باشد.

  • واحدهای ساختمانی (Structural unit): ساختمان پایه پوسته از جنس پروتئین است و معمولا مجموعه‌ای از چند واحد پروتئینی متفاوت می‌باشد. واحد ساختمانی غالبا به عنوان پروتومر شناخته می‌شود.

  • زیر واحد: یک زنجیره واحد پلی پپتیدی که به صورت پیچ خورده می‌باشد را زیر واحد گویند.

  • ویریون: ذره ویروس کامل است که در برخی موارد معادل نوکلئوکپسید است، اما در ویریونهای پیچیده شامل مجموعه نوکلئوکپسید و پوشش محیطی آن است. ویریون در انتقال اسید نوکلئیک ویروسی از سلولی به سلول دیگر نقش دارد.

  • دوره تغذیه اکتسابی: زمانی است که ناقل عاری از ویروس از منبع ویروس تغذیه می‌کند.

  • پایداری: زمانی است که یک ناقل ، پس از جدا شدن از منبع ویروس ، می‌تواند آلوده باقی بماند.

  • ویروسهای نیش زاد: ویروسهایی هستند که بر روی نیش آرواره‌ای حمل می‌گردند و اکثر یا تمام ویروسهای ناپایا را شامل می‌شوند.

  • ویروسهای گردش کننده: ویروسهایی هستند که از دیواره معده ناقل عبور می‌کنند و وارد خون و لنف می‌شوند. سپس از طریق غدد بزاقی قطعات دهانی ناقل را آلوده می‌سازند. اینها در ناقل تکثیر نمی‌یابند.

  • ویروسهای تکثیر شونده: ویروسهایی هستند که در بدن ناقل خود تکثیر می‌یابند.

ویروسهای گیاهی  

اطلاعات اولیه

ویروسها از جلبکها ، قارچها و گلسنگها ، خزه‌ها ، سرخسها و گیاهان عالی جدا شده‌اند، ولی در گیاهان عالی بیش از گیاهان پست مورد مطالعه قرار گرفته‌اند. ویروسها به گیاهان زراعی خسارت عمده‌ای وارد می‌سازند. در گیاهان بر خلاف گروههای دیگر ، ویروسهای رشته‌ای دراز زیاد دیده می‌شود. ماده ژنتیکی اکثر ویروسهای گیاهی RNA است، ولی در گروه ویروس موزائیک گل کلم از DNA تشکیل شده است. ژنوم در چند ویروس گیاهی به صورت قطعاتی در پیکرهای مجزا وجود دارد، به این گروه اصطلاحا ویروسهای چند جزئی نام نهاده‌اند.



تصویر

تاریخچه

ویروسهای گیاهی از بسیاری جهات به ویروسهای جانوری و باکتریایی شباهت دارند. مطالعه درباره این نوع وجه اشتراک خصوصا بعد از سال 1925 که بلاک و براکه ثابت کردند که ویروس غده زخمی شبدر نه تنها در گیاه ، بلکه در زنجره ناقل خود نیز تکثیر می‌یابد، با سرعت بیشتری دنبال شد. بنابراین میزبانهای بعضی ویروسها را می‌توان هم در جهان جانوران و هم در جهان گیاهان یافت.

شناسایی علایم ناشی از ویروسهای گیاهی در میزبان

آلوده شدن گیاهان به بیماریهای ویروسی معمولا بوسیله ساییدن مستقیم مایع آلوده بر سطح برگ انجام می‌شود. در این حالت باید دیواره یاخته‌ای یاخته‌های گیاهی به طریقی پاره شود تا ورود ویروس آسان گردد. پس از ورود ویروسها در اکثر موارد ، در محل ورود به برگ تغییر شکل حاصل می‌شود. علایم ظاهر شده بر روی برگ بیشتر به صورت لکه‌های سبز کم رنگ و پر رنگ به شکل موزائیک یا زخمهای موضعی است. گل گیاهان نیز ممکن است آلودگی ویروسی را به صورت تغییر رنگ ظاهر کند. مثلا در لاله یا شب بوی آلوده بخشی از گلبرگها سفید می‌شود.

ظهور علایم بیماریهای ویروسی نه تنها به ویروس و میزبان ، بلکه به عوامل محیطی و غذای گیاه نیز بستگی دارد. بعضی از بیماریهای ویروسی بطور مکانیکی از طریق مالش بر روی برگ منتقل نمی‌شوند و برای این منظور به موجودات زنده متکی هستند. چون اکثر ویروسهای گیاهی علائمی تقریبا همانند در گیاه ظاهر می‌سازند، بنابراین تشخیص آنها از روی علائم کار دشواری است. در این گونه موارد به خواص ذاتی آنها مانند خواص ریخت شناسی ، نوع اسید نوکلئیک و ... توجه می‌شود.



تصویر

گروههای اصلی ویروسهای گیاهی

چون پاره‌ای از ویروسهای گیاهی چندان شباهتی به ویروسهای دیگر ندارند، بنابراین گروه مستقلی را تشکیل می‌دهند، ولی بعضی دیگر دارای خصوصیات مشترک بوده و می‌توان آنها را در یک گروه جای داد. این گروهها به شرح زیر هستند:


  • ویروسهای میله‌ای یا رشته‌ای

  • ویروسهای ایزومتریک

  • ویروسهای باسیلی شکل

  • ویروئیدها که بیماری‌زاهایی شبیه ویروسها هستند که در میزبان خود نوکلئو پروتئین تولید نمی‌کنند. ویروئید غده دوکی سیب زمینی بیش از سایر عوامل بیماری‌زای این گروه مطالعه شده است.

کشت ویروسهای گیاهی

برای کشت و ازدیاد ویروسهای گیاهی معمولا از میزبانهایی استفاده می‌شود که اولا ویروس در آنها به صورت فرا گیر در آید، ثانیا قدرت تکثیر ویروس در گیاه زیاد باشد. یاخته گیاهی به علت دارا بودن دیواره سخت سلولزی نسبت به اکثر ویروسها غیر قابل نفوذ است. برای این منظور باید دیواره یاخته را خراش داد، این عمل با استفاده از مواد خراش دهنده‌ای مانند پودر کربوراندم صورت می‌گیرد.

گیاهان جوان را پس از دریافت ویروس در محلی با شرایط محیطی مناسب یعنی در دمای 20 تا 25 درجه سانتیگراد و رطوبت و نور کافی ، نگهداری می‌کنند. برای کشت ویروسها ، از قطعات جدا شده گیاهی و یا از مجموعه یاخته‌هایی که بطور نامنظم رشد یافته‌اند (بافت پینه‌ای یا کالوس) استفاده می‌شود. چون ویروس قادر به زیستن در بافت مریستمی گیاه نیست، با جدا کردن قطعه‌ای از مریستم گیاهی که مشکوک به آلودگی است و کشت آن در محیط غذایی می‌توان گیاه جدید عاری از ویروس تهیه کرد.

صفات اختصاصی آلودگی ویروسهای گیاهی

از صفات آلودگی ویروسهای گیاهی این است که گیاه در سراسر عمر خود آلوده باقی خواهد ماند. گیاهان برعکس مهره داران ، پادتن تولید نمی‌کنند و در نتیجه قادر به بی اثر کردن ویروسها در بدن خود نیستند. بدین جهت ویروسها تا مدت نامحدودی در گیاه باقی می‌مانند و خسارتهای زیادی خصوصا به گیاهانی که از طریق رویشی تکثیر می‌یابند، وارد می‌کنند. اساسا ویروسها تمام بافتهای گیاهی غیر از بافت مریستمی را مورد حمله قرار می‌دهند.



تصویر

اثر ویروس بر شکل ظاهری گیاه

شکل ظاهری گیاهان بر اثر حمله ویروس تغییر می‌کند و البته این تغییرات دنباله تحولاتی است که در اندرون گیاه به وقوع می‌پیوندد. علایمی که ظهور می‌کنند، برحسب نوع میزبان ، مدت پس از آلودگی ، نژاد ویروس و شرایط محیطی فرق می‌کند.

نکروزه شدن

شدیدترین اثر ویروسهای گیاهان ، کشتن یاخته‌هاست. قطر زخمهای موضعی که در نتیجه نکروزه شدن بافت در برگ بوجود می‌آیند، به نوع ویروس و نوع گیاه و شرایط محیط بستگی دارد. مرگ بعضی از اندام گیاه و یا مرگ گیاه بطور کلی در برخی از بیماریهای ویروسی ، متداول است.

اثر بر شکل گیاه و نحوه رشد آن

بیشتر ویروسها رشد میزبان را کم می‌کنند، ولی در بعضی حالات باعث رشد غیر عادی آن می‌شوند. برگها بر اثر حمله ویروس تغییر شکل می‌دهند. تولید گل و دانه نیز در گیاهان آلوده کاهش می‌یابد. اثر ویروس بر کاهش میزان محصول کاملا نمایان است.

اثر بر رنگ گیاه

از علایم اولیه آلودگی فراگیر ویروسی در اکثر گیاهان بی‌رنگ شدن رگبرگها در جوان‌ترین برگهاست و برگها پس از رشد ، حالت موزائیکی یا ابلقی پیدا کرده و یا زرد می‌شوند. بسیاری از ویروسهای مولد موزائیک بر رنگ گلها اثر می‌گذارند.



تصویر

اثر ویروس بر فیزیولوژی گیاه میزبان

  • بیشتر فرایندهای فیزیولوژیک تحت تاثیر ویروس قرار می گیرند. مقدار ازت به صورت آمونیوم و همچنین فسفر به صورت ترکیبات اسید نوکلئیک در گیاه توتون آلوده افزایش می‌یابد.

  • در برگ گیاهان آلوده به ویروسهای مولد زردی ، مقدار زیادی گلوکز ، فروکتوز و ساکارز جمع می‌شوند. ظاهرا علت اساسی تجمع مواد قندی ایجاد مقاومت در دمبرگ هنگام انتقال مواد است.

  • شدت تنفس در گیاه آلوده معمولا افزایش می‌یابد و گاهی تا 50 درصد بیش از گیاه سالم می‌شود. شدت تنفس گیاه بر اثر ویروسهایی که علایم شدیدی از خود نشان می‌دهند، زیادتر است و هر گاه علایم خفیف باشند، افزایش در تنفس احساس نمی‌شود.

ژنتیک جمعیت  

مقدمه

جمعیت از نظر ژنتیکی عبارت است از گروهی از موجودات یک گونه که با یکدیگر آمیزش پیدا می‌کنند. گروهی محدود از جمعیت که با هم ، آمیزش دارند، ژنتیک مندلی هم گفته می‌شوند. ژنتیک جمعیت ، شاخه‌ای از علم ژنتیک است که رفتار ، خصوصیات ، فراوانی و عمل متقابل ژنها را در یک جمعیت مندلی که دارای ذخایر ژنی مشترک هستند، بطور ریاضی بر اساس قانون تعادل هاردی _ وینبرگ ، مورد تجزیه و تحلیل قرار می‌دهد.



تصویر

سیر تحولی

اختلاف نظر بین صاحبنظران در مورد نقش ژنتیک در تکامل موجودات با پیدایش علم سنتتیک جدیدی به نام ژنتیک جمعیت (Population genetics) در دهه 1920 از بین رفت و متعاقبا دانشمندان مختلف از جمله هاردی ، ریاضیدان انگلیسی و وینبرگ در سال 1908 مطالعه نحوه رفتار ژنها و تغییرات فراوانی آنها در جمعیت و نقش آنها در تکامل موجودات زنده را دنبال و مهمترین قانون مرتبط با ژنتیک جمعیت را زیر عنوان قانون هاردی _ وینبرگ در اوایل این قرن پیشنهاد کردند. بطوری که به کمک این قانون می‌توان بسیاری از جنبه‌های مختلف ژنتیک جمعیت را مورد بحث قرار دارد.

ژن و سرنوشت آن

سرنوشت یک جفت ژن در یک جمعیت به چه صورت است؟ قدرت تولید مثل یک موجود که دارای ژن بخصوصی است، بستگی به فراوانی آن ژن در جمعیت ، و عواملی دیگری از جمله رابطه بین آن جمعیت و محیط دارد. بنابراین هر چند افراد حامل ژن می‌باشند، ولی سرنوشت این افراد و ژنی را که حمل می‌کنند، بستگی به جمعیت و عوامل موثر در آن دارد. جمعیت چه هاپلوئید و چه دیپلوئید و ... باشد، دارای دو صفت ویژه است: فراوانی ژنی و حوضچه ژنتیکی.


  • فراوانی ژنی عبارت است از نسبت آلل‌های مختلف یک ژن در جمعیت. جهت بدست آوردن فراوانی ژنی ، تعداد افرادی را که دارای ژنوتیپ‌های مختلف هستند، بدست آورده و نسبت فراوانی نسبی هر کدام از آلل‌ها را تخمین می‌زنیم. فراوانی یک ژن از فراوانی ژنوتیپ هموزیگوس نسبت به آن ژن به اضافه نصف فراوانی هتروزیگوس‌ها هم محاسبه می‌شود.

  • حوضچه ژنتیکی عبارت است از مجموع ژنهای موجود در گامتهای تولید شده توسط یک جمعیت. بنابراین رابطه ژنتیکی بین یک نسل با نسل دیگر شبیه رابطه ژنتیکی بین والد و نوزاد است.



تصویر

جمله بینومی و ژنتیک جمعیت

در این جمله حروف a نماینده احتمال حدوث یک اتفاق ، b نماینده احتمال حدوث اتفاق دیگر و n نماینده تعداد اتفاقات است. جمله را می‌توان برای بیان نسبت ژنوتیپی 1:2:1 حاصل از تلاقی‌های مونوهیبریدی بکار برد. به جای a از حروف p و به جای b از حروف q استفاده می‌شود. از آنجایی که در یک مکان ژنی معمولا دو تا آلل وجود دارد، فراوانی آنها را در جمعیت مجموعا برابر واحد یک در نظر می‌گیرند. با توجه به اطلاعات فوق می‌توان ژنوتیپ‌های موجود در یک مونوهیبرید () را به صورت معادله ، بیان نمود.

محاسبه فراوانی الل‌ها

هم بارزی یا غالبیت ناقص

در جمعیتهای انسانی دو تا الل اتوزومی M () و N () وجود دارند که می‌توانند آنتی ژن خون و نوع آن را تحت تاثیر قرار دارند. در جهت تعیین فراوانی الل‌های و مطالعه‌ای در مورد مهاجرین قفقازی کشور ایالات متحده به صورت زیر گزارش شده است:
ژنوتیپ
فنوتیپ
1303 3039 1787 تعداد



برای محاسبه فراوانی الل‌های و می‌توان به صورت زیر عمل کرد:






غالبیت کامل

غالب و مغلوب بودن الل‌ها ، فراوانی آنها را مستقیما تحت تاثیر قرار نمی‌دهد. فراوانی آنها مشابه الل‌های هم بارز یا الل‌های با غالبیت ناقص است. الل غالب در مقایسه با الل مغلوب ، فنوتیپ مربوطه را در توده بیشتر ظاهر می‌سازد، چرا که الل غالب اثر الل مغلوب را در حالت هتروزیگوسی نیز نهفته نگه می‌دارد. قدرت چشایی و عدم قدرت چشایی نسبت به نمک فنیل تیو کاربامید (PTC) مثال مناسبی برای مطالعه فراوانی الل‌ها در حالت غالبیت کامل است. کسانی که دارای قدرت چشایی نسبت به این نمک هستند، مزه آن را تلخ احساس می‌کنند و این صفت تحت کنترل یک ژن غالب T قرار دارد.


چند اللی

در صورتی که یک ژن بیش از دو آلل داشته باشد، با استفاده از بسط دو جمله‌ای می‌توان فراوانی‌های ژنوتیپی هر کدام از ژنوتیپ‌ها را بدست آورد. برای مثال اگر ژنی دارای سه آلل ، ، با فراوانی‌های به ترتیب p ، q و r باشد، بطوری که ، فراوانی ژنوتیپی را در حالت تعادل می‌توان از بسط سه جمله‌ای زیر بدست آورد که فراوانی‌های ژنوتیپی در گروههای خونی ABO را در انسان می‌توان با این روش نشان داد.


OO BB BO AB AA AO ژنوتیپ
O B AB A فنوتیپ
فراوانی



وابستگی به جنس

در مورد ژنهای وابسته به جنس ، تعداد ژنوتیپ‌های ممکنه افزایش می‌یابد. علت این افزایش تفاوت کروموزومهای جنسی در جنسهای نر و ماده است. اگر ماده‌ها XX و نرها XY باشند، از نظر یک جفت ژن a و A پنج ژنوتیپ امکان‌پذیر است، سه عدد از این ژنوتیپ‌ها (AA , Aa , aa) در ماده‌ها و دو عدد در نرها (A , a) وجود خواهد داشت. اگر آمیزش به صورت تصادفی باشد، می‌توان ثابت کرد که این تعادل نسل به نسل ، باقی خواهد ماند. این تعادل بر مبنای برابر بودن فراوانی آلل‌ها در نر و ماده است. اگر تفاوتی بین فراوانی الل‌ها در دو جنس مخالف وجود داشته باشد، جمعیت در حالت تعادل نمی‌باشد.

برای مذکرها


برای مونث‌ها




تصویر

آمیزش‌های خویشاوندی

از انواع آمیزش‌های غیر تصادفی ، آمیزش‌های خویشاوندی یا همخونی است. در این نوع آمیزش ، افرادی که دارای قرابت و خویشاوندی هستند، با هم آمیزش پیدا می‌کنند. همخونی دارای درجات مختلفی است. نزدیکترین نوع آن خودلقاحی است که در گیاهان صورت می‌گیرد. گیاهانی که نسبت به یک جفت ژن هتروزیگوس هستند، در اثر خودلقاحی تولید نوزادانی می‌کنند که 50% آنها هموزیگوت و مابقی هتروزیگوت هستند. میزان افزایش هموزیگوسیتی در اثر ازدواجهای فامیلی را ضریب همخونی Coefficient inbreeding گویند و آن را با f نشان می‌دهند.

ضریب همخونی احتمال به ارث رسیدن دو آلل یک جایگاه ژنی در یک موجود است که منشا مشترک داشته باشند و یا به عبارت دیگر این آلل‌ها کپی یک ژن در یک والد مشترک باشد. این ضریب در مورد فرد بکار برده شده و درجه خویشاوندی بین والدین فرد را نشان می‌دهد. اگر دو والد به صورت تصادفی آمیزش پیدا کنند، ضریب همخونی نوزاد برابر این است که دو گامت به صورت تصادفی از والدین دارای ژنهای یکسان در یک جایگاه ژنی باشند.

اصل هاردی _ وینبرگ

این اصل بدین صورت بیان می‌گردد که در یک جمعیت بزرگ که آمیزش به صورت تصادفی است و مهاجرت ، جهش و انتخاب وجود ندارد، فراوانی ژنی و ژنوتیپی ، نسل به نسل ، ثابت باقی مانده و فراوانی ژنوتیپی را می‌توان به کمک فراوانی ژنی بدست آورد.

عواملی که فراوانی ژنها را تغییر می‌دهند.

  • موتاسیون: جهش موجب پیدایش الل‌های جدید و نهایتا تغییرات ژنتیکی می‌شود.

  • مهاجرت: حرکت افراد یا ژنها از یک جمعیت به جمعیت دیگر را در ژنتیک ، مهاجرت گویند.

  • رانش ژنتیکی: در جمعیت‌های کوچک ، فراوانی پاره‌ای از آلل‌ها ، ممکن است بطور تصادفی شدیدا تغییر یابد.

  • آمیزش‌های غیر تصادفی: خویش آمیزی باعث می‌شود که فراوانی پاره‌ای از ژنوتیپ‌ها از آنچه که قانون هاروی _ وینبرگ پیش بینی می‌کند، متفاوت باشد.

  • گزینش: گزینش با تغییر در فراوانی ژنها ، عامل مهم در تغییرات تکاملی در داخل یک جمعیت به شمار می‌رود و می‌تواند موجب جدا شدن یا تفکیک جمعیتها به نژادها و گونه‌های مختلف شود.

ساختمان DNA


DNA یا دزاکسی ریبونوکلئیک اسید یکی از ماکرومولکولهای سلولی است که حامل اطلاعات وراثتی بوده و طی همانند سازی ژنتیکی از یک نسل به نسل بعد منتقل می‌شود. و در داخل سلول از روی آن RNA و پروتئین ساخته می‌شود.

مقدمه

کشف ماده‌ای که بعدها DNA نام گرفت در سال 1869 بوسیله فردیک میشر انجام شد. این دانشمند هنگام مطالعه بر روی گویچه‌های سفید خون ، هسته سلولها را استخراج کرد و سپس بر روی آن محلول قلیایی ریخت. حاصل این آزمایش ، رسوب لزجی بود که بررسیهای شیمیایی آن نشان داد، ترکیبی از کربن ، هیدروژن ، اکسیژن ، نیتروژن و درصد بالایی از فسفر می‌باشد. میشر این ماده را نوکلئین نامید. زمانی که ماهیت اسیدی این ماده مشخص گردید، نام آن به اسید دزاکسی ریبونوکلئیک تغییر یافت.

img/daneshnameh_up/7/7b/b.Gen.4.gif

ساختمان رشته‌ای DNA

سرعت پیشرفت تعیین ساختمان DNA بسیار کند بوده است. در سال 1930 کاسل و لوین دریافتند که نوکلئین در واقع اسید دزوکسی ریبونوکلئیک است. برسیهای شیمیایی آن مشخص کرد که زیر واحد تکرار شونده اصلی DNA ، نوکلئوتید می‌باشد که از سه قسمت تشکل شده است. یک قند پنتوز (2- دزوکسی D- ریبوز) ، یک گروه 5-فسفات و از یکی چهار باز آلی نیتروژن‌دار حلقوی آدنین (A) ، گوانین (G) ، سیتوزین (C) و تیمین (T) تشکیل شده است.

از این چهار باز دو باز آدنین و گوانین از بازهای پورینی و دو باز سیتوزین و تیمین از بازهای پیریمیدینی می‌باشند. به مجموعه قند و باز آلی نوکلئوزید گفته می‌شود. گروه فسفات می‌تواند به کربن3 و یا5 متصل شود. به مجموع نوکلئوزید و گروه فسفات متصل به آن نوکلئوتید می‌گویند. با توجه به اینکه یون فسفات می‌تواند هم به کربن 3 و هم به کربن5 متصل شود.

پس دو نوکلئوتید از طریق یک پیوند فسفودی استر بهم متصل می‌شوند. به این صورت که گروه هیدروکسیل یک نوکلئوتید با گروه فسفات نوکلئوتید دیگر واکنش داده و پیوند فسفودی استر را بوجود می‌آورد. از آنجایی که پیوند فسفودی استر ، کربنهای3 و5 دو قند مجاور را بهم متصل می‌کند، این پیوند را پیوند5-3 فسفودی استر نیز می‌نامند. یک زنجیره در اثر اتصال پشت سر هم تعدادی2-دزوکسی ریبونوکلئوتید بوسیله پیوندهای دزوکسی ریبونوکلئوتید تشکیل می‌شود.

تمامی نوکلئوتیدها در یک زنجیره پلی نوکلئوتیدی دارای جهت یکسان می‌باشند. به این صورت که نوکلئوتید انتهایی در یک سمت زنجیره دارای یک گروه5 آزاد و نوکلئوتید انتهایی در سمت دیگر زنجیره دارای یک گروه3 آزاد می‌باشد. بنابراین زنجیره پلی نوکلئوتیدی دارای جهت بوده و این جهت را به صورت5--->3 نشان می‌دهند. بنابراین اگر در نوکلئوتید ابتدایی کربن5 در بالای حلقه پنتوز و کربن3 در زیر آن باشد، در تمامی نوکلئوتیدهای بعدی زنجیره کربن 5 در بالای حلقه پنتوز جای خواهد داشت.

نتایج حاصل تا سال 1950

  1. DNA یک پلیمر رشته‌ای متشکل از واحدهای2- دزوکسی اسید ریبونوکلئیک می‌باشد که بوسیله پیوندهای فسفودی استر5-3 به هم متصل شده‌اند.
  2. DNA حاوی چهار زیر واحد dc و dG و dT و dA می‌باشد.
  3. مقادیر متوالی dT و dA با یکدیگر و dc و dG نیز با یکدیگر مساوی می‌باشند.

img/daneshnameh_up/9/97/15.JPG

مارپیچ دو رشته‌ای DNA

در سال 1953 در ساختمان سه بعدی DNA ، بوسیله واتسون و کریک کشف شد. واتسون و کریک با استفاده از مطالعات تفرق اشعه ایکس ، رشته‌های DNA که بوسیله فرانکلین و ویلکینز تهیه شده بود و همچنین ساختن مدلها و استنباطهای مشخصی ، مدل فضایی خود را ارائه دادند و در سال 1962 واتسون و کریک و ویلکینز به خاطر اهمیت کشف ساختمان DNA به صورت مشترک جایزه نوبل دریافت کردند.

مدل پیشنهادی آنان چنین بود. DNA یک مارپیچ دو رشته‌ای است که رشته‌های آن به دور یک محور مرکزی ، معمولا به صورت راست گرد پیچ می‌خورند. طبق مدل واتسون و کریک ، ستونهای قند - فسفات همانند نرده‌های پلکان به دو قسمت خارجی بازهای آلی پیچیده و به این ترتیب در معرض محیط آبکی داخل سلول هستند و بازهای آلی که خاصیت آبگریزی دارند، در داخل مارپیچ قرار می‌گیرند. هنگام تشکیل مارپیچ رشته‌ها به صورت موازی متقابل قرار می‌گیرند.

یعنی اگر جهت یک رشته3<--5 باشد، رشته دیگر 5<--3 خواهد بود. پیوندهای هیدروژنی بین آدنین از یک رشته با باز تیمین رشته مقابل و باز گوانین یک رشته با سیتوزین رشته مقابل بوجود می‌آیند. گر چه از نظر اندازه هر باز پورینی می‌تواند در مقابل یک باز پیریمیدین قرار بگیرد. ولی به دلیل وجود گروههای شیمیایی روی بازهای G و C و T و A پیوندهای هیدروژنی مناسب فقط بین C - G و T - A برقرار می‌شود و ایجاد پیوند بین T - G و C- A ممکن نیست.

واکنشهای توتومریزاسیون

اتم هیدروژن در بازهای آلی می‌تواند روی اتمهای نیتروژن و یا اکسیژن حلقه جابجا شود. این تغییر موقعیت هیدروژن روی حلقه باز را توتومریزاسیون می‌گویند. توتومریزاسیون در بازهای آدنین سیتوزین باعث تبدیل فرم آمینی به فرم ایمنی و در مورد بازهای تیمین و گوانین باعث تبدیل فرم کتونی به فرم انولی می‌شود.

در شرایط فیزیولوژیکی ثابت تعادل واکنش توتومریزاسیون بیشتر به سمت اشکال آمینی و کتونی می‌باشد. این حالت پایدار پروتونی ، الگوی تشکل پیوندهای هیدروژنی بین بازها را تعیین می‌نماید، بطوری که بازهای T و A با تشکیل دو پیوند هیدروژنی و بازهای G و C با سه پیوند هیدروژنی با هم جفت می‌شوند. C و A و همچنین T و G نمی‌توانند با هم جفت شوند.

زیرا در این بازها اتمهای هیدروژن هر دو در یک موقعیت قرار دارند و امکان ایجاد پیوند هیدروژنی وجود ندارد. به دلیل اینکه در رشته‌های DNA همواره باز A مقابل T و باز G مقابل C قرار دارد، این دو رشته را مکمل می‌نامند. بنابراین توالی موجود در یک رشته DNA ، توالی رشته مقابل را تعیین می‌کند. مکمل بودن دو رشته DNA ، اساس عمل همانند سازی DNA است.

تنظیم بیان ژن در یوکاریوتها  

نگاه کلی

مقدار اطلاعات موجود در یاخته‌های یوکاریوتی خیلی بیشتر از پروکاریوتهاست. فرصت عمل در جایگاه‌های متفاوت از هسته سلول تا سیتوپلاسم برای تنظیم کننده‌ها نیز بیش از پروکاریوتهاست. اطلاعات ژنتیکی در یوکاریوتها در ساختارهای کروموزومی که اغلب پیچیدگی زیادی دارند نهفته است و رونویسی و بروز ژنها در آنها کاهش تراکم قبلی این ساختار را ایجاب می‌کند. بنابراین در یوکاریوتها سیستمهای تنظیم کننده بیشتر ، دقیقتر و بویژه پیاپی هستند. این سیستمها در جایگاهها و در حد ساختارهای متفاوت سلولی عمل می‌کنند و می‌توانند وابسته به یکدیگر باشند. به عنوان مثال تنظیم بیان ژن مالتوز در بسیاری از یوکاریوتها نیز دیده می‌شود.

پروموترهای یوکاریوت اغلب شامل چندین جایگاه اتصال برای فعال کننده‌ها هستند و در بسیاری از موارد ، فعال سازی به توالیهایی نیاز دارد که از نقطه شروع نسخه برداری فاصله زیادی دارند. فقط تعداد کمی از ژنهای یوکاریوتی بوسیله رپرسور کنترل می‌شوند و نسخه برداری اکثر ژنهای یوکاریوتی ، در عدم حضور یک فعال کننده انجام پذیر نیست. در پروکاریوتها ، معمولا پروتئینهای تنظیمی و جایگاههای اتصال آنها هر دو شناخته شده است. در حالی که در یوکاریوتها در بسیاری از موارد فقط توالیهای تنظیم کننده DNA مورد شناسایی قرار گرفته است. تنها در موارد معدودی ، پروتئینهای تنظیمی یوکاریوتی و مکانیسم تنظیم نسخه برداری ، مورد بررسی قرار گرفته است.

توالیهای شناسایی شونده بوسیله فعال کننده‌ها

تاکنون دو نوع معمول از توالیهای DNA یوکاریوتی که بوسیله فعال کننده‌ها باند می‌شود، شناخته شده است. یک نوع توالی فعال (Upstream Activating Sequenc) یا UAS می‌باشد که در ناحیه Upstream بسیاری از ژنهایی که فعال کننده آنزیمهای متابولیک در یوکاریوتهای تک سلولی ، مانند مخمر یافت شده است. این توالیها بوسیله فعال کننده‌هایی که سرعت شروع نسخه برداری از پروموتوهای مربوطه را به شدت افزایش می‌دهند، باند می‌شوند.

نوع دیگری از توالیهای فعال ، Enhancer می‌باشد که در یوکاریوتهای چند سلولی یافت می‌شود. برخلاف UAS ، Enhancerها می‌توانند در '5 یا '3 یک ژن قرار گیرند و حتی در صورت فاصله زیاد از جایگاه شروع نسخه برداری قادرند نسخه برداری را تحت تاثیر قرار دهند.

تنظیم متابولیسم گالاکتوز در مخمرها

یکی از ژنهای یوکاریوتیک که توالی UAS و پروتئینهای باند شونده به آن ، هر دو مورد شناسایی قرار گرفته است، ژنی است که توسط پروتئین GAL4 در ساکارومایسین سروزیه کنترل می‌شود. پروتئین GAL4 مونومری است با وزن مولکولی 99000 که نسخه برداری حداقل 5 ژن را کنترل می‌نماید. از آن جمله می‌توان ژنهای GAL10 و گالاکتوز پرمه‌آز را کد می‌نمایند.

در ژنوم مخمر ، این ژنها در دو طرف UAS قرار دارند و در دو جهت مخالف نسخه برداری می‌شوند. پروموترهای این دو ژن در یک ناحیه 680 جفت بازی که دو ژن را از یکدیگر جدا می نمایند، قرار گرفته‌اند. همچنین در ناحیه بین دو پروموتر، یک UAS جای گرفته است. با اتصال پروتئین GAL4 به UAS ، UAS نسخه برداری هر دو ژن GAL1 و GAL10 را 1000 برابر افزایش می‌دهد.

قسمتهای تشکیل دهنده UAS

UAS گالاکتوز از چهار جایگاه جداگانه مخصوص اتصال GAL4 تشکیل یافته است که به ترتیب از شماره I تا IV شماره گذاری شده است. هر یک از این جایگاه‌های اتصال ، از یک توالی 17 جفت بازی مشابه تشکیل یافته است و دارای تقارن دو طرفی است. میل ترکیبی GAL4 برای پیوند با هر یک از جایگاههای اتصال یکسان نیست و اتصال بین حداقل دو جایگاه (IV,III) به صورت همکاری انجام می‌گیرد.

هر چند آزمایشات نشان می‌دهند که سرعت نسخه برداری ژنهای GAL1 و GAL10 ، با تعداد مولکولهای GAL4 باند شده به UAS ارتباط مستقیم دارد، فعالیت نسخه برداری به اشغال هر چهار جایگاه اتصال بوسیله GAL4 نیازی ندارد. بنابراین اثر GAL4 یک اثر اضافی است به این صورت که هر مولکول GAL4 بطور مستقل در تحریک نسخه برداری شرکت دارد.

قسمتهای تشکیل دهنده GAL4

GAL4 از دو domain تشکیل شده است، یکی مسئول باند شدن به DNA و دیگری مسئول تحریک نسخه برداری ژنهای ناحیه down stream می‌باشد. همانند اپرونهای کد کننده آنزیمهای متابولیک در پروکاریوتها ، ژنهای GAL10 , GAL4 تنها در حضور سوبسترا که در این مورد گالاکتوز می‌باشد، نسخه برداری می‌شوند.

در عدم حضور گالاکتوز ، GAL4 از طریق domain مسئول باند به DNA به UAS گالاکتوز متصل می‌شود ولی domain مسئول تحریک نسخه برداری آن ، بوسیله یک پروتئین تنظیم کننده منفی به نام GAL80 باند می‌شود. اتصال Gal80 به GAL4 از فعال سازی نسخه برداری GAL10 , GAL1 توسط GAL4 جلوگیری به عمل می‌آورد. با این حال در حضور گالاکتوز ، گالاکتوز به GAL80 باند سبب جدا شدن آن از GAL4 می‌شوند. در این حالت GAL4 قادر است نسخه برداری GAL10 , GAL1 را فعال نماید.

ممانعت از نسخه برداری بوسیله گلوکز

هر چند، هر دو ژن GAL10 , GAL1 در حضور گلوکز نیز به صورت منفی تنظیم می‌شوند، کنترل این ژنها پیچیده تر از اینهاست این ممانعت از نسخه برداری بوسیله گلوکز ، مشابه جلوگیری کاتابولیتی در پروکاریوتهاست و در صورت حضور هر دو نوع قند (گلوکز و گالاکتوز) GAL10 , GAL1 در سرعتهای پایین ، نسخه برداری می‌شوند. گلوکز ، نسخه برداری GAL10 , GAL1 را از طریق جلوگیری از باند شدن GAL4 به UAS گالاکتوز بلوکه می‌کند.

اینکه آیا گلوکز عملا به GAL4 باند می‌شود یا GAL10 , GAL1 بوسیله یک متابولیسمی از گلوکز تحریک می‌شوند، هنوز نامشخص است. بطور کلی domainهای فعالیت پروتئینهای یوکاریوتیک ، مانند GAL4 خیلی کم مورد شناسایی قرار گرفته ولی آنها را در سه طبقه تقسیم می‌نمایند.


  1. تعدادی از domoianهای فعالیت ، شامل نواحی طویلی هستند که یک آلفا هلیکس آمفی پاتیک با بار منفی را تشکیل می‌دهند. یک مثال از این نوع پروتئینها GAL4 می‌باشد. برای فعال سازی نسخه برداری ، domain فعالیت GAL4 لازم و ضروری است.

  2. تعدادی از domainهای فعالیت ، پروتئینهای غنی از گلوتامین هستند. پروتئین SP1 دارای domain از این نوع است قدرت فعال کردن نسخه برداری SP1 با برداشتن دو domain غنی از گلوتامین آن ، به شدت کاهش می‌یابد.

  3. تعدادی از domainهای فعالیت ، پروتئینهایی غنی از پرولین هستند. پروتئین CTF شامل domainای از این نوع است چگونگی تحریک نسخه برداری توسط domainهای فعالیت ، هنوز ناشناخته است ولی ممکن است، از طریق درگیر کردن پروتئینهای دیگر نزدیک RNA پلی مراز П ، اثر خود را اعمال نمایند. به عنوان مثال آزمایشات انجام شده در مخمرها نشان می‌دهند که GAL4 مستقیما با RNA پلی مراز П وارد واکنش نمی‌شود بلکه اثر خود را از طریق پروتئین دیگری اعمال می کند.

کنترل بیان ژن توسط توالیهای افزایش دهنده یا (Enhancers)

Enhancer نوع دوم از توالیهای فعال می‌باشد که در ارتباط با بسیاری از ژنهای کلاس П یافت شده‌اند. این توالیهای DNA بوسیله سه خصوصیت مشخص می‌گردند:


  1. Enhancerها اغلب در هر جهتی فعال هستند.

  2. Enhancer قادرند نسخه برداری را حتی در صورتی که از نقطه شروع آن هزاران جفت باز فاصله داشته باشند، تحت تاثیر قرار دهند. آنها بعضی اوقات در یک انترون یا در انتهای '3 یک ژن قرار دارند.

  3. Enhancer ها، نسخه برداری هر ژنی در مجاورشان را تحت تاثیر قرار می‌دهند.

بررسیها نشان می‌دهند که Enhancerها ، بسیاری از ژنهای ویروسی را نیز فعال می‌نمایند. این نوع Enhancerها که تحت عنوان ، Enhancerهای ویروسی شناخته می‌شوند، برای انجام عمل خود به فعال کننده‌های خاصی نیاز دارند. این ، خودش توجیهی است بر این سوال که چرا بعضی از ویروسها ، تنها در میزبانهای خاصی قادر به رشد هستند.

روشهای عمل Enhancer

به نظر می‌رسد که Enhancerها در 4 روش متفاوت عمل می‌کنند.


  1. ممکن است، یک فعال کننده به یک Enhancer متصل و تحریک نسخه برداری را سبب شود، یا اینکه به جذب RNA پلی مراز به پروموتر ، کمک نماید. Enhancerهایی که به عنوان عناصر حساس به هورمون شناخته شده‌اند، به این روش عمل می‌نمایند.

  2. حضور Enhancerها ممکن است ساختمان DNA را در مجاورت ژنی که نسخه برداری می‌شود، تحت تاثیر قرار دهد. بنابراین این ناحیه از DNA را بیشتر در دسترس RNA پلی مراز قرار می‌دهند. مشاهده نسبتهای متفاوتی از پیریمیدین/ پورین در بسیاری از این Enhancerها که پذیرش ترکیب ساختمانی غیر طبیعی را در Invivo سبب می‌شود، این تئوری را حمایت می‌کند.

  3. Enhancerها ممکن است در جایی از DNA که به ماتریکس هسته ، متصل می‌باشد، قرار داشته باشند. بنابراین نگهداری DNA در این قسمت و افزایش غلظت موثر RNA پلی مراز را سبب می‌شوند.

  4. Enhancerها ممکن است، یک جایگاه بزرگ هدف ایجاد نمایند که RNA پلی مراز یا تعداد دیگری از پروتئینهای ضروری ، قبل از مهاجرت به پزوموتر ، در آن ناحیه با DNA باند می‌شوند. بر اساس این نوع مکانیسم ، مشاهده شده است. زمانی که یک جایگاه به پروتئین متصل شوند، در بین بعضی از Enhancerها و پروموترها قرار می‌گیرند، از عمل Enhancer جلوگیری به عمل می‌آید. به نظر می‌رسد که پروتئین باند شده ، مهاجرت پروتئین دیگر را Enhancer به پروموتر بلوکه می‌کند.

آزمایشات نشان می‌دهد که بعضی از Enhancerها تنها در یک بافت خاص هستند. به عنوان مثال در موش Enhancerهای ژنهای ایمونوگلولین ، تنها در سلولهای لمفوئید موثر می‌باشند. اینگونه مشاهدات ، موید این موضوع است که Enhancerهای خاص ، ممکن است بوسیله یک پروتئین تنظیم کننده باند شده به DNA که تنها در گلبولهای سفید خون یافت می‌شوند، تشخیص داده شوند.

ژنتیک پایه  

اطلاعات اولیه

علم ژنتیک یکی از شاخه‌های علوم زیستی است. بوسیله قوانین و مفاهیم موجود در این علم می‌توانیم به تشابه یا عدم تشابه دو موجود نسبت به یکدیگر پی ببریم و بدانیم که چطور و چرا چنین تشابه و یا عدم تشابه در داخل یک جامعه گیاهی و یا جامعه جانوری ، بوجود آمده است. علم ژنتیک علم انتقال اطلاعات بیولوژیکی از یک سلول به سلول دیگر ، از والد به نوزاد و بنابراین از یک نسل به نسل بعد است. ژنتیک با چگونگی این انتقالات که مبنای اختلالات و تشابهات موجود در ارگانیسم‌هاست، سروکار دارد. علم ژنتیک در مورد سرشت فیزیکی و شیمیایی این اطلاعات نیز صحبت می‌کند.



تصویر

منبع گوناگونی ژنتیکی چیست؟

چگونه گوناگونی در جمعیت توزیع می‌گردد؟ البته تمام اختلافات ظاهری موجودات زنده توارثی نیست، عوامل محیطی و رشدی موجود نیز مهم بوده و بنابراین برای دانشمندان ژنتیک اهمیت دارد. مدتها قبل از اینکه انسان در مورد مکانیزم ژنتیکی فکر کند، این مکانیزم در طبیعت به صورت موثری عمل می‌کرده است. جوامع گوناگونی از حیوانات و جانوران بوجود آمدند که تفاوتهای موجود در آنها ، در اثر همین مکانیزم ژنتیکی بوجود می‌آمد.

تغییراتی که در اثر مکانیزم ژنتیکی و در طی دوران متمادی در یک جامعه موجود زنده تثبیت شده، تکامل نامیده می‌شود. تغییرات وسیعی نیز در اثر دخالت بشر در مکانیزم ژنها بوجود آمده که برای او مفید بوده است. جانوران و گیاهان وحشی ، اهلی شده‌اند، با انتخاب مصنوعی ، موجودات اهلی بهتر از انواع وحشی در خدمت به بشر واقع شده‌اند.

تاریخچه

علم ژنتیک در اواخر قرن 19 با آزمایشات مندل در نخود فرنگی ، شروع گریدید. با اینکه پیشرفت در اوایل کند بود، ولی در اوایل قرن 20 ، جایگاه مهم خود را در علوم جدید پیدا کرد. آزمایشات متعددی که در این قرن ابتدا در مگس سرکه توسط مورگان و ذرت و سپس میکروارگانیزم‌ها انجام گرفت، طیف این دانش را به حدی وسیع نمود که امروزه در بیشتر شاخه‌های علوم ، از سطح مولکولی گرفته تا محاسبات پیچیده ریاضی ، مورد بررسی قرار می‌گیرد. با کمک مهندسی ژنتیک انتقال صفات بین گونه‌ها و جنسها امکان‌پذیر شده و این شاخه جدید ژنتیک گره گشای بسیاری از مسائل پزشکی و کشاورزی گردیده است.



تصویر

رشد تسلسلی مفاهیم ژنتیکی

رشد و گسترش مفاهیم موجود در هر علم ، مبتنی بر واقعیتهایی است که به مرور زمان شناسایی و روی هم انباشته می‌شوند و به این ترتیب رشد تسلسلی آن را بوجود می‌آورند. موارد فهرست‌وار زیر بخشی از مراحل مختلف رشد این علم جوان را تشکیل می‌دهد:


  • توارث از صفات ویژه تمام موجودات زنده است، یعنی اینکه هر موجود زنده همانند خود را در یکی از مراحل زندگی خود تولید می‌کند.

  • در تولید مثل ، عامل یا عواملی از والدین به نتایج منتقل می‌شود. فقط در قرن اخیر بود که دانشمندان به واقعیت این امر پی بردند. پیشرفتهای حاصله در اصلاح تکنیکهای میکروسکوپی در قرن 19 روشن نمود که ماده‌ای از والدین به فرزند انتقال می‌یابد و از این تاریخ به بعد اعتقادات پیشینیان مبنی بر اینکه ، تولید مثل از پدیده‌های خارق‌العاده منشا می‌گیرد، مردود شناخته شد.

  • در داخل یک گونه تغییرات توارثی وجود دارد. با پیدایش مفاهیم و پدیده‌های تکاملی که توسط لامارک و داروین عنوان گردیدند، امکان وجود تغییرات توارثی بین گونه‌ها توجیه شد و تائید گردید که بدون تغییرات ژنتیکی ، تکامل گونه‌ها به این سادگی امکان‌پذیر نبوده است.

  • تغییرات ژنتیکی را می‌توان از تغییرات محیطی جدا نمود. صفات موجودات زنده که کلا فنوتیپ آن را تشکیل می‌دهند، تابعی از ترکیب ژنتیکی آنها (ژنوتیپ) و عوامل محیطی است که این موجود در آن زندگی می‌کند. تظاهر فنوتیپ ، تابع ژنوتیپ و عوامل محیطی است. این عوامل ممکن است فنوتیپ را تغییر دهند، ولی ژنوتیپ را تغییر نمی‌دهند. به عبارت دیگر ، محیط صحنه‌ای است که ژنوتیپ بازیگر آن می‌باشد و فنوتیپ نیز محصولی است که در نتیجه عمل متقابل ژنوتیپ و محیط بوجود می‌آید.

  • ماده‌ای که از یک نسل به نسل دیگر منتقل می‌شود، حامل کلیه اطلاعات و خصوصیات یک فرد به صورت رمز (Code) می‌باشد. در سالهای اخیر ماهیت ماده ژنتیکی شناخته شد و معلوم گردید که ماده منتقله از یک نسل به نسل دیگر DNA است که کلیه اطلاعات و خصوصیات یک فرد بالغ را به صورت رمز دارا می‌باشد.

  • تغییرات آنی ، نادر و غیرقابل پیش بینی شده‌ای در ماده ارثی یک موجود بوجود می‌آید، این تغییرات موتاسیون نام دارند.




تصویر
*ژنها واحدهای ارثی هستند.


موضوعات مورد بحث در ژنتیک پایه

ژنتیک مندلی

ژنتیک مندلی یا کروموزومی بخشی از ژنتیک امروزی است که از توارث ژنهای موجود در روی کروموزوم‌ها بحث می‌کند، اما برعکس در ژنتیک غیر مندلی که به ژنتیک غیر کروموزومی نیز معروف است، توارث مواد ژنتیکی موجود در کلروپلاست و میتوکندری ، مورد تجزیه و تحلیل قرار می‌گیرد.

تغییرات نسبتهای مندلی

نسبتهای فنوتیپی مندلی در مونوهیبریدها (3:1) ، تحت تاثیر عوامل متعددی چون غالبیت ناقص ، هم بارزی ، ژنهای کشنده ، نافذ بودن و قدرت تظاهر یک ژن و چند آللی قرار می‌گیرد که نسبتهای مندلی را تغییر می‌دهد.

احتمالات

آشنایی با قوانین علم احتمالات ، از نظر درک چگونگی انجام پدپده‌های ژنتیکی ، پیش بینی فنوتیپی ، نتایج حاصله از یک آمیزش و برآورد انطباق نسبت فنوتیپی نسل اول و دوم ، با یکی از مکانیزمهای ژنتیکی دارای اهمیت فوق‌العاده‌ای می‌باشد.

پیوستگی ژنها

پدیده پیوستگی ژنها (Linkage) بوسیله سوتون ، در سال 1903 ، عنوان گردید. سوتون با بیان اینکه کروموزوم‌ها حامل عوامل ارثی (ژنها) هستند، روشن نمود که تعداد ژنها به مراتب بیشتر از تعداد کروموزوم‌ها بوده و بنابراین هر کروموزوم ، می‌تواند حامل ژنهای متعددی باشد.

جهش ژنی

موتاسیون ژنی را در اصل ، بدن توجه به تغییرات ماده ژنتیکی ، برای بیان تغییرات فنوتیپی در جانوران یا گیاهان نیز بکار برده‌اند و بدان مناسبت ، موجودی که فنوتیپ آن در نتیجه موتاسیون تغییر می‌کند را موتان می‌گویند.



تصویر

ارتباط ژنتیک با سایر علوم

ژنتیک علمی است جدید و تقریبا از اوایل سالهای 1900 میلادی با ظهور علوم سیتولوژی و سیتوژنتیک جنبه علمی‌تر به خود گرفته است. علم سیتولوژی با ژنتیک قرابت نزدیکی دارد و به کمک این علم می‌توان مورفولوژی ، فیزیولوژی و وظایف ضمائم مختلف یک یاخته را مورد بررسی قرار داد. سیتوژنتیک نیز بخشی از علوم زیستی است که روی کروموزوم ، ضمائم یاخته و ارتباط آن با پدیده‌های ژنتیکی بحث می‌کند و در واقع علم دورگه‌ای از سیتولوژی و ژنتیک به شمار می‌رود.

رمز گشایی ماده ژنتیکی  


رمز ژنتیکی تعداد نوکلئوتیدهایی است که برای ساختن یک اسید آمینه لازم است. برای تعیین تعداد این نوکلئوتیدها آزمایشهای زیادی صورت گرفت و مشخص شد که تعداد نوکلئوتیدها برای ساختن یک اسید آمینه 3 عدد می‌باشد.

دید کلی

از سال 1953 که ساختار مولکولی DNA به صورت مارپیچ مضاعف مطرح شد و DNA به عنوان مرکز اطلاعات یاخته و نیز واسطه انتقال اطلاعات از نسلی به نسل دیگر یاخته‌ای مورد تاکید قرار گرفت. مساله اصلی چگونگی دخالت این مولکول در عملکردهای یاخته‌ای بود. از همان زمان این نظر قوت گرفت که سنتز پروتئینها مثل دیگر فرآیندهای زیستی یاخته‌ها تحت کنترل ماده ژنتیکی باشد.

پیشرفتهای حاصل نشان داد که عمل پروتئین سازی در واقع نوعی ترجمه است که طی آن زبان اطلاعاتی DNA و RNA به زبان اسیدهای آمینه تبدیل می‌شود. توالی اسیدهای آمینه بوسیله RNA پیک (mRNA) تعیین می‌شود و به عبارت دیگر رمز مربوط به اسیدهای آمینه بر روی mRNA قرار دارد. اما مشخص کردن این امر دشوار و حتی غیر ممکن بنظر می‌رسید زیرا هیچ روشی برای ایجاد ارتباط مستقیم بین رمز اسیدهای آمینه و mRNA وجود نداشت.



تصویر

سیر تحولی

  • در اوایل دهه 1950 پائول زامک نیک آزمایشاتی را برای تعیین محل سنتز پروتئین در داخل سلول انجام داد و تعیین کرد که سنتز پروتئین در اندامکهایی به نام ریبوزوم صورت می‌گیرد.

  • دومین پیشرفت کلیدی توسط مالون هاگلند بدست آمد که نشان داد اسیدهای آمینه برای شرکت در پروتئین سازی در ریبوزومها ، باید به RNA محلول که بعدها RNA ناقل نامیده شد، متصل شوند.

  • سومین پیشرفت کلیدی زمانی حاصل شد که کریک نحوه کد شدن اطلاعات ژنتیکی در زبان 4 حرفی نوکلئوتیدها به زبان 20 حرفی پروتئینها را مورد بررسی قرار داد. لازم به یادآوری است که فقط 20 اسید آمینه در ساختار پروتئینها شرکت دارند.این سه پیشرفت بزودی منجر به شناسایی مراحل اصلی سنتز پروتئین و نهایتا رمز گشایی ماده ژنتیکی گردید که هر اسید آمینه را مشخص می‌کند.

رمز ژنتیکی (Genetic Code)

در بین RNA های مختلف فقط RNA پیک حاوی رمز ژنتیکی برای سنتز پروتئینها می‌باشد. بازهای سازنده RNA پیک فقط 4 نوع هستند در حالی که پروتئینها از 20 نوع اسید آمینه ساخته شده‌اند. بنابراین باید بین بازهای موجود در مولکول RNA پیک و اسیدهای آمینه رابطه‌ای وجود داشته باشد تا بتوان رمز 4 حرفی RNA پیک را به رمز 20 حرفی پروتئینها ترجمه کرد. اگر یک نوکلئوتید نماینده یک اسید آمینه فرض شود در این صورت فقط رمز ترجمه چهار اسید آمینه بدست می‌آید (41).

اگر دو نوکلئوتید برای یک اسید آمینه در نظر گرفته شود در این صورت رمز ترجمه 16 (42) اسید آمینه بدست می آید که البته با مقایسه 20 اسید آمینه کافی نیست. اگر 3 نوکلئوتید را رمز ترجمه یک اسید آمینه فرض کنیم در این صورت 64 (43) رمز برای 20 اسیدآمینه بدست می آید. رمز سه نوکلئوتیدی ، رمز بازهای سه گانه (Triplet) نامیده می شود. RNA حامل ، واسط بین اسیدهای آمینه و بازهای سه گانه RNA پیک در پروتئین سازی است.



تصویر

آزمایش نیرنبرگ برای تعیین رمز اسید آمینه

برای این که بتوان مکانیسم بیوسنتز پروتئینها را مطالعه کرد. نخست باید مخلوط مناسبی از مواد مختلف داخل سلولی تهیه نمود و با افزایش اسیدهای آمینه رادیواکتیو در این محیط واکنشهای سنتز پروتئینها را روشن ساخت. نیرنبرگ 20 نمونه از این مخلوط تهیه کرد و به هر یک از این نمونه‌ها مقداری پلیمر اسید اوریدیلیک و تنها یکی از 20 اسید آمینه را به صورت رادیواکتیو افزوده و نمونه‌ها را در دمای 37 درجه سانتیگراد قرار داد، رسوب حاصل فقط حاوی اسید آمینه فنیل آلانین است. بنابراین رمز فنیل آلانین در پلی u وجود دارد و باز سه گانه مربوطه uuu است. نیرنبرگ با تکرار آزمایش و انتخاب پلیمرهای مصنوعی دیگر ، بازهای سه گانه ccc را برای رمز پرولین و AAA را برای لیزین تعیین کرد.

روش شیمیایی شناسایی رمزهای سه گانه

نیرنبرگ و یکی از همکاران او به نام لدر با استفاده از روشهای شیمیایی تری‌نوکلئوتیدهای مختلفی را که ردیف بازهای آنها کاملا معلوم بود تهیه نموده و آنها را به جای پلی‌نوکلئوتیدهای مصنوعی در تجربه فوق مورد استفاده قرار دادند. به کمک این تجربیات دانشمندان فوق به این نتیجه رسیدند که هر باز سه گانه بر روی ریبوزوم قرار گرفته و با یک RNA ناقل که حامل اسیدهای آمینه مربوط به این باز سه گانه است پیوند می‌یابد. این ترکیب را می‌توان با روش صاف کردن روی نیترات سلولز ، به صورت خالص جدا ساخته و اسید آمینه و باز سه گانه موجود در آن را تعیین کرد و رمز مربوطه را شناخت.



تصویر

رابطه رمز ژنتیکی با سنتز پروتئینها

از 64 باز سه گانه یا کدون سه کدون به کدونهای بی‌معنی (Nonsense) معروف هستند، فاقد هر گونه رمز برای اسیدهای آمینه هستند اما دست کم دو تا از آنها حاوی علایم پایانی سنتز پروتئینی می‌باشند به این معنی که نقطه پایان پلیمر شدن اسیدهای آمینه به صورت پروتئین را تعیین می‌کنند. 61 کدون باقیمانده حاوی رمزهایی برای انتخاب 20 اسید آمینه هستند و این خود به این معنی است که در رمزهای ژنتیکی بعضی از رمزها تکراری هستند یعنی چند کدون حاوی رمز یک اسید آمینه واحد می‌باشند.

ویژگیهای عمومی رمزهای ژنتیکی

  • رمزهای ژنتیکی گسسته نیستند. یعنی بین آخرین نوکلئوتید یک رمز و اولین نوکلئوتید رمز بعدی فاصله‌ای وجود ندارد به عبارت دیگر بین دو رمز ژنتیکی ، نوکلئوتیدی بدون رمز وجود ندارند.

  • رمزهای ژنتیکی منحصر به فرد و در عین حال مترادف هستند. به این معنی که از یک سو یک رمز ژنتیکی برای اسید آمینه‌ای هم در پروکاریوتها و هم در یوکاریوتها رمزی برای همین اسید آمینه است و به جز متیونین و تریپتوفان هر اسید آمینه بیش از یک رمز دارد (رمزهای مختلف).

  • در بین ترادفهای هر رمز ژنتیکی ، تفاوت بطور معمول مربوط به نوکلئوتید سوم است. کمتر اختصاصی بودن باز سوم ، عاملی برای سهولت باز شدن پیوند بین رمز و ضد رمز هنگام سنتز پروتئین است. پدیده تغییر پذیری باز سوم ، انعطاف پذیری نام دارد. پدیده انعطاف پذیری یا لرزش موجب می‌شود برخی جهشهای ژنی که منجر به تغییر در سومین باز رمز می‌شوند، اثر نامناسبی در سنتز پروتئین بر جای نگذارند.

جهش نقطه‌ای  

فراوانترین جهشهای کوچک هستند. در اثر این جهش‌ها یک جفت نوکلئوتید جایگزین یک جفت نوکلئوتید دیگر می‌شود. یکی از دلایلی که جهش‌ها می‌توانند بی‌تاثیر باشند تکراری بودن رمزگان ژنتیک است. که تبدیل رمز یک اسید آمینه را به رمز دیگری برای همان اسید آمینه ممکن می‌سازد. به همین علت تشخیص آنها دشوار است همچنین امکان دارد بر اثر جهش نوکلئوتید یا اسید آمینه جدیدی در RNA یا پروتئین محصول ژن جهش یافته وارد شود بدون اینکه تغییری در فعالیت محصول ژن ایجاد کند.

برای مثال یک اسید آمینه جایگزین اسید آمینه‌ای با همان بار الکتریکی می‌شود. یک سری نقطه‌ای هم وجود دارد که تشخیص آنها راحت‌تر است بعنوان مثال برای ژنهای پروتئین ساز. جهشهای نقطه‌ای رمز یک اسید آمینه را به رمز اسید آمینه دیگر ، رمز اسید آمینه را به رمز پایان پروتئین سازی یا رمز پایان پروتئین سازی را به یک اسید آمینه تبدیل می‌کنند. و در حالت اخیر طول پروتئین به ترتیب کوتاه‌تر یا بلندتر می‌شود. جهشهای نوع اول اثر نامطلوب بر فعالیت پروتئین دارند ولی گاهی پروتئینی بوجود می‌آید که بهتر از پروتئین طبیعی عمل می‌کند.



تصویر

تاثیرات برخی جهشهای نقطه‌ای

  1. جهشی در ژن زنجیره بتا هموگلوبین انسان که T/A را جایگزین C/G کرده است، باعث تبدیل رمز GLu به LYs شده است. پروتئین حامل به هموگلوبین C معروف است. در اینجا یک اسید آمینه آب دوست جایگزین اسید آمینه آب دوست دیگری شده است. عملکرد این پروتئین جهش یافته با پروتئن وحشی تفاوت زیادی ندارد. یعنی جهش کم تاثیر بوده است.

  2. جهش در ژن بتا هموگلوبین T/A را به A/T تبدیل کرده است. در اثر این جهش اسید آمینه آب گریز والین جای گزین اسید آمینه آب دوست گلوتامیک اسید شده است. تغییر قابل توجهی در فعالیت پروتئین جهش یافته رخ می‌دهد. این جهش باعث بیماری آنمی (کم خونی) داسی شکل می‌شود.

  3. جهشی که رمز اسید آمینه تیروزین را به رمز پایان تبدیل می‌کند. G/C را جای گزین C/G کرده است. و باعث پایان زود رس پروتئین سازی می‌شود.

  4. جهشی که رمز پایان ژن زنجیره آلفا هموگلوبین را به رمز Glena تبدیل کرده است در اثر این جهش پروتئن سازی به درون توالی دنباله‌ای RNA پیک ادامه می‌یابد تا زمانی که رمز پایانی دیگر پدید آید پروتئین طبیعی 141 و پروتئین جهش یافته 172 اسید آمینه دارد پروتئین جهش یافته به (Hb- Cs (Hemoglobin Constant Spring معروف است.

جهشهایی که بر فعالیت محصول تاثیر می گذارند.

برای ژنهای پروتئین ساز این دسته از جهشهای نقطه‌ای رمز یک اسید آمینه دیگر ، رمز اسید آمینه‌ای را به رمز پایان پروتئین سازی یا رمز رمز پایا پروتئین سازی را به رمز یک اسید آمینه تبدیل می‌کند. در دو حالت اخیر طول پروتئین به ترتیب کوتاه یا بلندتر می‌شود که اگر طول پروتئین کوتاهتر شود تاخیر نامطلوبی بر فعالیت پروتئین می‌گذارد.

مکانیزمی از جهش نقطه‌ای

به عنوان مثال جفت نوکلئوتید T/A بر اثر ماده جهش‌زای اسید نیترو () جایگزین جایگزین C/G می‌شود. اثر مستقیم اسید نیترو ، حذف گروه آمین از C است که آن را به U تبدیل می‌کند. جفت نوکلوئید U/G پایدار نیست. پس از یک دور همانند سازی جفت نوکلوئید U/A در جایگاه جهش یافته در یکی از سلول‌های دختر حاصل می‌شود.

این جفت نوکلوئید نیز موسوم DNA نیست پس از یک دور همانند سازی جفت نوکلئوتید T/A در یکی از سلول‌های دختر ظاهر می‌شود رابطه مکملی بین A و T صحیح است و اینها جفت نوکلئوتید پایداری را تشکیل می‌دهند. بنابراین پس از دو دوره همانند سازی بعد از اثر اولیه اسید نیترو T/A جایگزین C/G شده است.



تصویر

ترمیم جهش

مجموع روندهای سلولی بکار رفته در مرمت تغییرات وارد شده به ماده ژنتیک را ترمیم می‌گویند. جهش‌های زیادی روزانه رخ می‌دهند اما اغلب این جهش‌ها پایدار نیستند زیار ترمیم می‌شوند. یقینا بدون دستگاه ترمیم طول عمر سلول‌های موجودات خیلی کمتر می‌بود. تعداد زیادی پروتئین در پروکاریوتها و یوکاریوتها در ترمیم فعالیت داند در معمولترین روند ترمیم نوکلئوتید تغییر یافته از یک رشته DNA حذف و از رشته مقابل به عنوام الگوی برای بازسازی منطقه حذف شده استفاده می‌شود.

ژن


ژن یا ماده وراثتی (hereditary factor)، ماده پیچیده‌ای است که در هنگام تقسیم می‌تواند همانند خود را بوجود آورد. واحدهایی از این ماده وراثتی از پدر و مادر به فرزندان انتقال می‌یابند. این واحدها دارای ویژگیهای بسیار پایدار بوده و بطور مشخص موجودی را که صاحب آن است، تحت تاثیر قرار می‌دهند. ژنها بر روی کروموزومها در جایگاههای ویژه ، مرتب شده‌اند.

دید کلی

پس از آنکه اسیدهای نوکلئیک بوجود آمدند، احتمال می‌رود که پیدایش جانداران جدید با سرعت بسیار زیادتری انجام گرفته باشد. این شتاب عظیم را ژنها ، که القاب کنونی اسیدهای نوکلئیک هستند امکان‌پذیر ساخته‌اند. اکنون جانداران بر طبق دستورالعمل‌هایی که ژنهایشان فراهم می‌آورند، به تولید مثل می‌پردازند و به سبب اینکه نسلهای متوالی جانداران ، ژنها را به ارث می‌برند. پدید آمدن یک جاندار جدید به صورت فرایندی کنترل شده و غیر تصادفی درآمده است. آنچه جاندار به ارث می‌برد تا حد زیادی بقای او را تعیین می‌کند، بنابراین وراثت از نظر سازگاری جانداران حائز اهمیت است.

اما چیزی که جانداران به ارث می‌برند، ماهیچه نیرومند ، برگ سبز ، خون قرمز یا مانند آن نیست، بلکه ژنها و دیگر محتویات سلولهای زاینده است. سپس در فردی که از این سلولها ناشی می‌شود، صفات قابل رویت تحت نظارت ژنهایی که به ارث برده است، پدید می‌آید. محصول این گونه وراثت موجود زنده منحصر به فردی است که در بعضی از صفات کلی خود به والدینش شباهت دارد و در بسیاری از صفات جزئی با آنها تفاوت دارد. اگر این تفاوتها کشنده نباشند یا سبب عدم باروری نشوند، جاندار حاصل می‌تواند زنده بماند و ژنهای خود را به نسلهای بعدی انتقال دهد.



تصویر

تاریخچه

«ویلیام هاروی» ، در سال 1651 ، این نظریه را بیان کرد که تمام موجودات زنده از جمله ، انسان ، از تخم بوجود آمده‌اند و اسپرم فقط فرایند تولید مثل نقش دارد. هاروی همچنین تئوری اپی‌ژنز را ارئه داد که طبق این تئوری در مرحله رشد جنینی ، ارگانها و ساختمانهای جدیدی از ماده زنده تمایز نیافته ، بوجود می‌آید. پژوهشهای جدید درباره وراثت بوسیله گرگور مندل که کشیشی اتریشی بود، در نیمه دوم قرن 19 آغاز شد. وی دو قانون مهم را کشف کرد که همه پیشرفتهای بعدی علم وراثت بر پایه آنها بنا نهاده شده است.

ژن به عنوان یک واحد عملکردی

تمام نوکلئوتیدها در DNA ، گهگاه دستخوش دگرگونی‌هایی می‌شوند که جهش (Mutation) نام دارد. پس از هر جهش ، ژن جهش یافته (Mutant) به جای ژن اولیه به سلولهای فرزند انتقال می‌یابد و به ارث برده می‌شود. DNA جهش یافته ، آنگاه صفات تازه‌ای بوجود می‌آورد که ارثی هستند. ژنهایی که جز ژنهای ساختمانی هستند، مسئول ساختن زنجیره‌های پلی پپتیدی هستند.

اگر جهشی در یکی از این ژنها ، روی دهد، مجموعه صفات و ویژگی‌هایی که ژن جهش یافته مسئول بخش کوچکی از آن می‌باشد، بطور مستقیم یا غیر مستقیم ، تحت تاثیر قرار خواهند گرفت و از آنجایی که بیشتر پروتئین‌ها نقش آنزیمی بر عهده دارند، این جهش بر واکنشهایی که آنزیم مربوطه در آن دخالت دارد، اثر می‌گذارد. ژنهای دیگر که نقش تنظیم کننده دارند، فعالیت ژنهای دیگری را کنترل می‌کنند و جهش در این ژنها بر کنترل ژنهای ساختمانی اثر می‌گذارد. DNA هر موجود از تعدادی ژنهای مختلف تشکیل شده است.

در هنگام رشد ، هر ژن دقیقا ژن همانند خود را پدید می‌آورد. هنگامی که یک ژن جهش می‌یابد، ژن جهش یافته در تقسیمات بعدی سلول ، ژنهای جهش یافته همانند خود را بوجود می‌آورد و اگر این ژن یک ژن ساختمانی باشد، جهش منجر به تولید پروتئین جهش یافته می‌گردد. ژن جهش یافته و ژن اولیه نسبت بهم آللومورف (Allelomorph) نامیده می‌شوند.



تصویر

ژن و کروموزوم

یاخته‌های یک گیاه یا یک جانور دارای تعداد معینی کروموزوم است که ویژه آن گونه گیاهی یا جانوری می‌باشد و تعداد این کروموزومها در همه یاخته‌های آن فرد پایدار و یکسان است. بنابراین همه یاخته‌های یک فرد دارای مجموعه‌های ژنی یکسانی می‌باشند، مثلا در مگس سرکه در حدود 10 هزار ژن شناخته شده است. افراد مختلف یک گونه دارای آللهای متفاوت یک ژن در سلولهای خود می‌باشند. در هر کروموزوم ، ژنها بطور خطی قرار گرفته‌اند و نظام آنها پایدار و ثابت است. جایگاه ثابت هر ژن در کروموزوم که ویژه آن ژن است، لوکوس (Locus) نامیده می‌شود.

دو ژن آلل نمی‌توانند بطور همزمان در یک جایگاه وجود داشته باشند و در یک زمان هر جایگاه می‌تواند پذیرایی تنها یکی از ژنهای آلل باشد. برخی از ژنها به ویژه ژنهایی که در ساختن RNA دخالت دارند، چندین بار در یک مجموعه کروموزومی تکرار می‌شوند. در پدیده میتوز ، پیش از تقسیم هسته ، ژنها و در نتیجه کرومزوم‌ها، دو برابر شده‌اند و هر یک از دو یاخته حاصل از تقسیم ، یکی از مجموعه‌های کروموزومی را دریافت می‌کند و از اینرو مجموعه‌های کروموزومی دو سلول دقیقا یکسان خواهد بود.

ژن و گوناگونی افراد

در یاخته‌های بدنی گیاهان و جانوران کروموزوم‌ها به صورت جفت وجود دارند و از نظر ظاهری یکسان می‌باشند (به جز کروموزوم‌های جنسی). در هر لنگه از یک جفت کروموزوم ، نظام جایگاههای ژنی ، همانند نظام جایگاههای لنگه دیگر می‌باشد و ژنهایی که در جایگاههایی همانند قرار دارند، ممکن است یکسان بوده و یا آلل یکدیگر باشند. در حالت نخست فرد از نظر دو ژن هموزیگوت و در حالت دوم هتروزیگوت می‌باشد. شماره کروموزوم‌ها در یاخته‌های حاصل از تقسیم میوز یا گامتها ، 2/1 تعداد کروموزوم‌ها در سلولهای پیکری است و در هر یک از گامتها ، تنها یک لنگه از یک جفت کروموزوم همانند ، در برخی از جایگاهها باهم متفاوت هستند.

در نتیجه گامتها نیز با هم متفاوت خواهند بود و چون توزیع کروموزومها در هر گامت از قانون احتمالات پیروی می‌کند، در نتیجه احتمال تولید گامتهای مختلف در صورتی که تعداد کروموزوم‌ها را در نظر بگیریم، خواهد بود. این حالت ، تفکیک مستقل نامیده می‌شود. تقاطع کروموزومی (Crossing-Over) نیز به ایجاد تفاوتهای بیشتر بین گامتها ، کمک می‌کند.

سازمان یابی و ساختمان ژن

در ساده‌ترین حالت ، یک ژن را می‌توان به صورت قطعه‌ای از یک مولکول DNA و حاوی رمز برای توالی اسید آمینه‌ای یک رشته پلی پپتیدی و توالی‌های تنظیم کننده لازم برای بروز آن در نظر گرفت. به هر حال این توصیف برای ژنهای موجود در ژنوم انسان ، ناکافی است، زیرا تعداد ناچیزی ژن به صورت توالی‌های رمزدار پیوسته وجود دارد. بلکه در عوض در بین اکثریت ژنها ، یک یا بیش از یک ناحیه فاقد رمز موجود است. این توالی‌های حد فاصل که اینترون (intron) نامیده می‌شوند، ابتدا در هسته به RNA رونویسی می‌شوند، اما در RNA پیامبر بالغ در سیتوپلاسم وجود ندارند.

لذا اطلاعات توالی‌های اینترونی ، بطور طبیعی در فرآورده پروتئینی نهائی نمایانده نمی‌شود. اینترونها یک در میان با توالی‌های رمزدار یا اگزون (exon) که نهایتا توالی اسید آمینه‌ای پروتئین را رمز گردانی می‌کنند، قرار دارند. اگرچه تعداد کمی از ژنها در ژنوم انسان فاقد اینترون می‌باشند، اکثر ژنها حداقل یک و معمولا چندین اینترون دارند. ژن دیستروفین وابسته به جنس که حاوی 2 میلیون جفت باز است، کمتر از یک درصد آن حاوی اگزونهای رمزدار است. اینترونها در ساختار ژنها ، نقش حفاظت از اگزونها را در برابر جهشها بر عهده دارند.



تصویر

خصوصیات ساختمانی یک ژن معمولی انسان

ژن نه تنها توالی‌های رمزدار واقعی است، بلکه دارای توالی‌های نوکلئوتیدی مجاور لازم برای بروز مناسب ژن ، یعنی برای تولید یک مولکول RNA پیامبر طبیعی ، به مقدار صحیح ، در محل درست و در زمان صحیح حین تکامل و یا در طی چرخه سلولی نیز می‌باشد. توالی‌های نوکلئوتیدی مجاور ، پیامهای مولکولی شروع و پایان را برای ساخت RNA پیامبر رونویسی شده از ژن فراهم می‌کنند. ژن دارای دو انتهای به است. در انتهای ژن ، یک ناحیه پیشبر وجود دارد که شامل توالی‌های مسئول شروع مناسب رونویسی است.

پیشبرها و نیز عناصر تنظیم کننده می‌توانند محلهایی برای جهش در بیماریهای ژنتیکی که قادرند مانع بروز طبیعی ژن شوند، باشند. این عناصر تنظیم کننده شامل تقویت کننده‌ها ، خاموش کننده‌ها و نواحی کنترل کننده جایگاه ژنی هستند. در انتهای ژن ، یک ناحیه ترجمه نشده مهم یافت می‌شود که حاوی پیامی برای اضافه شدن یک توالی از واحدهای آدنوزین به اصطلاح دم پلی A به انتهای RNA پیامبر بالغ است.

مبانی بروز ژن

جریان اطلاعات از ژن به پلی پپتید ، شامل چندین مرحله است.
  • رونویسی یک ژن در محل شروع رونویسی روی RNA کروموزومی ، بلافاصله از توالی‌های رمزدار آغاز می‌شود و در طول کروموزوم ادامه یافته، از چند صد جفت باز تا بیش از یک میلیون جفت باز و در هر دو گروه اینترونها و اگزونها و ناحیه بعد از پایان توالی‌های رمزدار را رونویسی می‌کند.

  • پس از تغییر یافتن در هر دو انتهای و رونوشت اولیه RNA ، بخشهای مربوط به اینترونها برداشته می‌شوند و قطعات مربوط به اگزونها به یکدیگر چسبانده می‌شوند.

  • پس از برش و چسباندن RNA ، RNA پیامبر حاصل که اینک فقط حاوی بخشهای رمزدار ژن است، از هسته به سیتوپلاسم سلول برده می‌شود و در آنجا نهایتا به توالی اسید آمینه‌ای پلی پپتید رمزگردانی شده ، ترجمه می‌گردد. هر یک از این مراحل ، در معرض بروز خطا هستند و جهشهایی که در هر یک از این مراحل مداخله می‌کنند، در ایجاد تعدادی از اختلالات ژنتیکی دخیل دانسته شده‌اند.

تنظیم فعالیت ژنها بوسیله هورمونها

نگاه کلی

سلولهای ارگانیسمهای چند سلولی قادرند با یکدیگر ارتباط برقرار نمایند. هورمونهای پپتیدی مانند انسولین ، هورمونهای استروئیدی مانند تستوسترون و هورمونهای تیروئید مانند تیروکسین ، ارتباط دهنده بین سلولی هستند که نقش آنها هماهنگ ساختن اعمال سلولهای مختلف است. استروژنها ، گلوکز کرتیکوئیدها و پروژسترون ، هورمونهای آنالوگ کلسترول می‌باشند.

سلولهایی که نسبت به حضور این هورمونها عکس العمل نشان می‌دهند، دارای دسپتورهایی برای یک یا بیشتر از آنها هستند. اینگونه دسپتورها ، بر روی غشای خارجی سلول جای دارند. هنگامی که هورمونها به دنبال بعضی از عوامل تحریک کننده ، به داخل خون آزاد می‌شوند، در سراسر بدن جریان یافته و به دسپتورهای باند شده به غشا متصل می‌شوند. در این مرحله دسپتورها و لیگاندهای محلول در چربی آنها ، از غشا عبور کرده و داخل هسته می‌شوند.

در هسته ، هورمونها اثر خود را از طریق باند شدن به توالیهای افزایش دهنده‌های (Enhancer) مخصوص به نام عناصر پاسخ دهنده به هورمون و تشدید نسخه برداری از ژنهای خاص ، اعمال می‌کند. تجربه نشان داده است که استروژن سلولهای اویدوکت جوجه پس از اتصال به گیرنده خاص ، به کروماتین هسته سلول چسبیده و سنتز مقدار mRNA را سبب می‌شود. RNA حاصل ، سنتز مقدار زیادی از پروتئینها نظیر ovalbumine و لیزوریم را هدایت می‌کند.

مکانیسم اثر هورمون بر فعالیت ژنها

هورمون ، اساسا به عنوان یک القا کننده عمل می‌کند و احتمالا به جایگاه مخصوصی از کروموزوم می‌چسبد (که با جایگاه اپراتور پروکاریوتها قابل مقایسه است). به نظر می‌رسد که گلوکو کرتیکوئیدها یک اثر عمومی روی بسیاری از سلولهای جانوری داشته باشند. این دسته از استروئیدهای آدرنال نه تنها موجب تطابق با استرس می‌شوند، بلکه افزایش رشد اعضای متعددی از پستانداران را نیز سبب می‌گردند.

گلوکو کرتیکوئیدها همچنین فعالیت زیادی در القای آنزیمهای کبدی مربوط به گلوکونئوژنر نظیر آنزیم فسفرانول پیروات کربوکسیداز دارند. فعالیت آنزیمهایی نظیر تیروزین آمینو ترانسفراز و سایر آنزیمها که برای تبدیل اسکلت کربنی اسیدهای آمینه به گلوکز لازمند، نیز تابع گلوکو کرتیکوئیدها می‌باشند. تقریبا تمام بافتهای پستانداران واجد پذیره‌هایی برای گلوکو کرتیکوئید هستند و در حال حاضر به نظر می‌رسد که گلوکو کرتیکوئیدها ، هورمونهایی هستند که قابلیت تنظیم فعالیتهای ژنتیکی را دارند.

تاثیر هورمونها و شوک حرارتی در بیان ژنهای حشرات

اگر هورمون استروئیدی که سبب پوست اندازی حشرات می‌شود، به لاروی تزریق شود یا به محیط کشت سلولهای بزاقی اضافه گردد، تشکیل پافهای ویژه‌ای را موجب خواهد گردید. ایجاد پافها یک پدیده دوره‌ای و قابل برگشت است. در زمانهای معین و در بافتهای مختلف لارو ، پافها ممکن است ظاهر شده ، رشد کنند و سپس ناپدید گردند. کروموزومهای پلی‌تن و پافها بهترین گواه بر تنظیم فعالیت ژن یوکاریوتی در سطح سنتز RNA می‌باشد.

اینگونه پاف را می‌توان بوسیله شوک حرارتی در لاروهای درزوفیلا ایجاد کرد. اگر لارو در حرارت ˚37C قرار گیرد، 5 دقیقه بعد از این شوک حرارتی ، چندین پاف جدید بر روی کروموزومهای غدد بزاقی قابل رویت می‌گردند. این پافها واجد RNA پلی‌مراز بوده و از نظر سنتز RNA بسیار فعال می‌باشند و سنتز هشت پروتئین مخصوص شوک حرارتی را کند می‌کنند. بنابراین هورمونها و یا شوک حرارتی می‌توانند باعث تنظیم ژن در یوکاریوتها شوند.

تنظیم بیان ژن در پروکایوتها  





مقدمه

فعالیتهای محصولات ژنی می‌‌تواند به طرق مختلف تحت کنترل قرار گیرد. از آنجایی که هیچ ارگانیسم زنده‌ای در آن واحد به بیان تمام ژنهای خود نیازمند نمی‌‌باشد فعالیت متابولیکی یک سلول ، همچنین می‌‌تواند بوسیله کنترل سنتز آنزیم‌ها و دیگر ماکرومولکولها تنظیم شود کنترل تحت عنوان تنظیم بیان ژن نامیده می‌‌شود. سرعت سنتز یک محصول ژنی می‌‌تواند در هر مرحله‌ای از جریان اطلاعات بیولوژیکی کنترل شود. به عنوان مثال ، مقدار RNA کامل تولید شده به فراوانی نقاط شروع نسخه برداری ، سرعت طویل شدن RNA ، کارآیی خاتمه نسخه برداری و سرعت مراحل مختلف تکامل RNA بستگی دارد.


تصویر



مقدار پروتئین تولید شده توسط سلول نیز به ، پایداری mRNA تکامل یافته ، فراوانی نقاط شروع ترجمه ، سرعت طویل شدن زنجیره پلی پپتیدی ، کار آیی خاتمه ترجمه و کارایی تغییرات پس از ترجمه وابسته است. در طی میلیونها سال تکامل ، هر سلول بنا به متابولیسم خود بیان خاصی پیدا کرده است، به عنوان مثال در یک سلول برای تولید میزان بالایی از پروتئین ، آن سلول واجد پروموتور قوی و مناسبی برای انجام این کار شده است.

سلولها همچنین دارای ژنهایی می‌‌باشند که فعالیت آنها در رابطه با محیط تنظیم می‌‌شوند. راههای مختلفی برای بان هر نوع ژن وجود دارد ولی چون سیستم‌های کنترل در باکتریها و بویژه در باسیل کولی بررسی شده است که در این باکتری چگونگی تنظیم متابولیسم لاکتوز بررسی شده بطور خلاصه در زیر توصیح آن می‌‌پردازیم.

بیان اپرون لاکتوز (کنترل منفی)

باکتریها ، معمولا کربن مورد نیاز رشد خود را بوسیله کاتابولیز کردن قندهای پنتوز یا هگزوز از طریق راه گلیکولیز بدست می‌‌آورند. E.Coli غالبا گلوکز را به عنوان تنها منبع کربن ، مورد استفاده قرار می‌‌دهد، ولی قادر است از قندهای دیگر شامل β گالاکتوزیدها مانند لاکتوز نیز نیاز خود را برآورده نمایند. آنزیم‌های لازم برای جذب و مصرف B- گالاکتوزید ، جز در حضور سوبسترا سنتز نمی‌‌شوند البته در حضور منبع بهتری مانند گلوکز ، حتی با وجود B- گالاکتوزید این گونه آنزیم‌ها در مقادیر اندک سنتز می‌‌شوند سنتز آنزیم‌های لازم برای مصرف B- گالاکتوزید، هر سطح شروع نسخه برداری کنترل می‌‌شود. کاتابولیسم B- گالاکتوزیدها بوسیله Eali به سه پروتئین نیاز دارد.


تصویر




  1. لاکتوزپرمه آز: توسط ژن LacY کد می‌‌شود و به غشا می‌‌چسبد.

  2. B- گالاکتوزیداز: آنزیم تترامری است که توسط ژن LacZ کد می‌‌شود.

  3. تیوگالاکتوزید ترانس استیلاز: دایمری است که توسط ژن laca کد می‌‌شود.

ابتدا β گالاکتوزید ، توسط لاکتوز پرمه آز وارد غشا می‌‌شود. اکثر دی ساکاریدها به قندهای شش کربنی هیدرولیز می‌‌شوند این کار توسط β گالاکتوزیداز انجام می‌‌گیرد ولی β گالاکتوزیدهایی که فاقد متابولیسم می‌‌باشند، ابتدا توسط تیوگالاکتوزید ترانس استیلاز ، استیله و سپس از غشای پلاسمایی به بیرون رانده می‌‌شود. هر سه ژن A , Y , Z که این پروتئینها راکد می‌‌کنند، در یک mRNA سیسترونیک نسخه برداری می‌‌شوند. بیان این سه ژن توسط اپرن لاکتوز و اپرن لاکتوز بوسیله پرسور لاکتوز کنترل می‌‌شود.

رپرسور لاکتوز تترامری با وزن مولکولی 38600 می‌‌باشد که توسط ژن LacI نسخه برداری و ترجمه می‌‌شود. این ژن ، قبل از اپرون لاکتوز قرار دارد. اپرون لاکتوز از 2 اپراتور O2 , O1 تشکیل شده است. اپراتور O1 بین پروموتر اپرون لاکتوز و ژن Z و 2O در ژن Z واقع شده است. در عدم حضور لاکتوز پرسور که یک تترامر می‌‌باشد در آن واحد با O1 و O2 باند می‌‌شود در یک لوپ متشکل از 401 جفت باز را در DNA تشکیل می‌‌دهد، تشکیل چنین لوپی مانع از بیان ران می‌‌شود.

در غیاب لاکتوز ، رپرسور لاکتوز O2 , O1 باند می‌‌شود. و بیان ژن لاکتوز را از طریق ممانعت عمل RNA پلیمراز ، متوقف می‌‌کند لاکتوز ، به عنوان یک القا کننده می‌‌تواند با رپرسور لاکتوز ترکیب شود و شکل فضایی آن را تغییر دهد. بنابراین در حضور لاکتوز ، رپرسور از اپراتور جدا ژن بیان می‌‌شود. لازم به ذکر است که لاکتوز ، خود به تنهایی قابلیت القایی ندارد، بلکه به محض ورود به آلولاکتوز تبدیل می‌‌شود و این ماده دارای خاصیت القایی ست. اما گالاکتوزیل گلیسرول خود به تنهایی خاصیت القایی دارد.



تصویر

کنترل اپرون لاکتوز بوسیله فعال کننده

نسخه برداری ژن لاکتوز نه تنها به حضور لاکتوز بستگی دارد بلکه حضور گلوکز در محیط کشت نیز می‌‌تواند بیان ژن لاکتوز را تحت تاثیر قرار دهد. وقتی لاکتوز به تنهایی در محیط باشد اپرون لاکتوز صد در صد بیان می‌‌شود، ولی وجود گلوکز 50 مرتبه بیان آن را کاهش می‌‌دهد. به مهار بیان ژن لاکتوز در اثر حضور گلوکز مهار کاتابولیت می‌‌گویند. بیان بسیاری از آنزیم‌ها به این گونه کنترل می‌‌شود. این گونه کنترل ، تحت تاثیر پروتئین آلوستیکی است که به CAMP باند می‌‌شود و این پروتئین ، پروتئنی گیرنده CAMP نامیده می‌‌شود.

به صورت وجود گلوکز در محیط کشت E.Coli و CAMP کم و پروتئین گیرنده (CRP) غیر فعال می‌‌شود. در نتیجه پروتئین گیرنده نمی‌‌تواند با DNA ترکیب شود. در غیاب گلوکز CAMP زیاد و CRP به CAMP باند می‌‌شود و بنابراین CRP - CAMP تولید می‌‌شود. این کمپلکس بر پروموتر لاکتوز می‌‌چسبد و افزایش فعالیت RNA پلی مرازی روی پروموتر لاکتوز را سبب می‌‌شود. CRP دیمری با وزن مولکولی 22500 است که یک انتهای آن با DNA و انتهای دیگر با CAMP باند می‌‌شود.

بنابراین وجود CAMP -CRP ، فعال کننده بیان ژن لاکتوز است ولی CAMP در حضور گلوکز کاهش می‌‌یابد. باند CRP-CAMP روی پروموتر ، همیشه با افزایش بیان همراه نمی‌‌باشد و در بعضی موادر باعث توقف بیان ژن می‌‌شود. به عنوان مثال باند شدن CPR-CAMP به پروموتر ژن CRP بلوکه شدن ژن CRP را سبب می‌‌شود. بنابراین افزایش غلظت CRP - CAMP در داخل سلول ، بیان ژن کنترل کننده پروتئین CRP را بصورت منفی تحت تاثیر قرار می‌‌دهد و در نتیجه تولید پروتئین CRP متوقف می‌‌شود. چنین تنظیمی را خود تنظیمی یا اتورگولاسیون می‌‌گویند.